A Bird’s-Eye View of Modern Symmetric Cryptography from Combinatorial Designs

Chapter
Part of the Springer Optimization and Its Applications book series (SOIA, volume 71)

Abstract

In the past few decades, combinatorial design theory has grown to encompass a wider variety of investigations, many of which are not apparently motivated by any practical application. Rather, they are motivated by a desire to obtain a coherent and powerful theory of existence and properties of designs. Nevertheless, it comes as no surprise that applications in coding theory and communications continue to arise, and also that designs have found applications in new areas. Cryptography in particular has provided a new source of applications of designs, and simultaneously a field of new and challenging problems in design theory. In this paper, we present a number of applications of combinatorial designs in which the connection with modern symmetric (private-key) cryptography appears to be substantial and meaningful. We survey recent powerful private-key cryptosystems from special classes of combinatorial designs, i.e., orthogonal and Plotkin arrays, Hadamard matrices which are constructed from one and two circulant cores, which possess beautiful combinatorial properties. In addition, we present a new symmetric cryptosystem based on the famous Williamson construction for Hadamard matrices. Practical aspects of the cryptosystems, in terms of security and cryptanalysis, are analyzed and examples of real-time encryption and decryption are provided using cryptographic algorithms. We conclude by providing a state-of-the-art comparison of private-key block ciphers in the field of modern cryptography.

Keywords

Encryption block ciphers combinatorial designs 

References

  1. 1.
    Angelopoulos, P., Evangelaras, H., Koukouvinos, C., Lappas, E.: An effective step-down algorithm for the construction and the identification of nonisomorphic orthogonal arrays. Metrika. 66, 139–149 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Angelopoulos, P., Koukouvinos, C., Lappas, E.: On construction, classification and evaluation of certain two level nonisomorphic orthogonal arrays. Int. J. Appl. Math. Stat. 15, 63–72 (2009)MathSciNetGoogle Scholar
  3. 3.
    Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Advances in Cryptology CRYPTO ’90, pp. 2–21. Springer-Verlag (1990)Google Scholar
  4. 4.
    Biham, E., Shamir, A.: Differential Cryptanalysis of the Full 16-Round DES, CS 708. In: Proceedings of CRYPTO ’92. Lecture Notes in Computer Science, Vol. 740 (1991)Google Scholar
  5. 5.
    Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment. Information Security and Cryptography Series. Springer-Verlag, Heidelberg (2003)Google Scholar
  6. 6.
    Brown, L., Pieprzyk, J., Seberry, J.: LOKI - a cryptographic primitive for authentication and secrecy applications. In: Seberry, J., Pieprzyk, J. (ed.) Advances in Cryptology - Auscrypt’90, LNCS 453, pp. 229–236. Springer-Verlag (1990)Google Scholar
  7. 7.
    Bulutoglu, D.A., Margot, F.: Classification of orthogonal arrays by integer programming. J. Statist. Plann. Inference. 138, 654–666 (2008)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Colbourn, C.J., Dinitz, J.H., Stinson, D.R.: Applications of combinatorial designs to communications, cryptography, and networking. In: Lamb, J.D., Preece, D.A. (eds.) Surveys in Combinatorics, pp. 37–100. Cambridge University Press, Cambridge (1999)Google Scholar
  9. 9.
    Cormen, T.H., Leiserson, C.H., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press (2003)Google Scholar
  10. 10.
    Craigen, R.: Hadamard matrices and designs. In: Colbourn, C.J., Dinitz, J.H. (eds.) The CRC Handbook of Combinatorial Designs, pp. 370–377. Crc Press, Boca Raton, FL (1996)Google Scholar
  11. 11.
    Evangelaras, H., Koukouvinos, C., Lappas, E.: Further contributions to nonisomorphic two level orthogonal arrays. J. Statist. Plann. Inference. 137, 2080–2086 (2007)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Ferguson, N., Schneier, B.: Practical Cryptography. Wiley Publishing, Inc. (2003)Google Scholar
  13. 13.
    Fletcher, R.J., Gysin, M., Seberry, J.: Application of the discrete Fourier transform to the search for generalised Legendre pairs and Hadamard matrices. Australas. J. Combin. 23, 75–86 (2001)MathSciNetMATHGoogle Scholar
  14. 14.
    Georgiou, S., Koukouvinos, C.: On generalized Legendre pairs and multipliers of the corresponding supplementary difference sets. Utilitas Math. 61, 47–63 (2002)MathSciNetMATHGoogle Scholar
  15. 15.
    Georgiou, S., Koukouvinos, C., Seberry, J.: Hadamard matrices, orthogonal designs and construction algorithms, Chapter 7. In: Wallis, W.D. (ed.) Designs 2002: Further Computational and Constructive Design Theory, pp. 133–205. Kluwer Academic Publishers, Norwell, Massachusetts (2003)Google Scholar
  16. 16.
    Geramita, A.V., Seberry, J.: Orthogonal Designs: Quadratic Forms and Hadamard Matrices. Marcel Dekker, New York-Basel (1979)MATHGoogle Scholar
  17. 17.
    Gysin, M., Seberry, J.: An experimental search and new combinatorial designs via a generalization of cyclotomy. J. Combin. Math. Combin. Comput. 27, 143–160 (1998)MathSciNetMATHGoogle Scholar
  18. 18.
    Hadamard, J.: Resolution d’une question relative aux determinants. Bull. des. Sci. Math. 17, 240–246 (1893)Google Scholar
  19. 19.
    Hall, M. Jr.: A survey of difference sets. Proc. Amer. Math. Soc. 7, 975–986 (1956)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Hedayat, A.S., Sloane, N.J.A., Stufken, J.: Orthogonal Arrays: Theory and Applications. Springer-Verlag, New York (1999)MATHGoogle Scholar
  21. 21.
    Kotsireas, I.S., Koukouvinos, C., Seberry, J.: Hadamard ideals and Hadamard matrices with circulant core. J. Combin. Math. Combin. Comput. 57, 47–63 (2006)MathSciNetMATHGoogle Scholar
  22. 22.
    Kotsireas, I.S., Koukouvinos, C., Seberry, J.: Hadamard ideals and Hadamard matrices with two circulant cores. European J. Combin. 27, 658–668 (2006)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Koukouvinos, C.: Williamson matrices. [Online]. Available: http://www.math.ntua.gr/~ckoukouv/designs.htm
  24. 24.
    Koukouvinos, C., Lappas, E., Simos, D.E.: Encryption schemes using orthogonal arrays. J. Discrete Math. Sci. Cryptogr. 12, 615–628 (2009)MathSciNetMATHGoogle Scholar
  25. 25.
    Koukouvinos, C., Simos, D.E.: Encryption schemes using plotkin arrays. Appl. Math. Inf. Sci. 5, 500–510 (2011)MathSciNetGoogle Scholar
  26. 26.
    Koukouvinos, C., Simos, D.E.: Encryption schemes based on hadamard matrices with circulant cores. submitted for publication.Google Scholar
  27. 27.
    van Lint, J.H., Wilson, R.M.: A Course in Combinatorics. Cambridge University Press, Cambridge (1992)MATHGoogle Scholar
  28. 28.
    Luby, M.: Pseudorandomness and Cryptographic Applications. Princeton Academic Press, Princeton (1996)MATHGoogle Scholar
  29. 29.
    Mao, W.: Modern Cryptography: Theory and Practice. Prentice Hall (2004)Google Scholar
  30. 30.
    Matsui, M.: Linear cryptanalysis method for DES cipher. In Workshop on the theory and application of cryptographic techniques on Advances in cryptology (EUROCRYPT ’93), Tor Helleseth (Ed.). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 386–397 (1994)Google Scholar
  31. 31.
    Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press (1997)Google Scholar
  32. 32.
    Orrick, W.: Switching operations for Hadamard matrices. SIAM J. Discr. Math. 22, 31–50 (2008)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Paley, R.E.A.C.: On orthogonal matrices. J. Math. Phys. 12, 311–320 (1933)Google Scholar
  34. 34.
    Plotkin, M.: Decomposition of Hadamard matrices. J. Combin. Theory, Ser. A. 13, 127–130 (1972)Google Scholar
  35. 35.
    Rao, C.R.: Factorial experiments derivable from combinatorial arrangements of arrays. J. Royal Stat. Society (Suppl.). 9, 128–139 (1947)Google Scholar
  36. 36.
    Rao, C.R.: On a class of arrangements. Proc. Edinburgh Math. Society. 8, 119–125 (1949)MATHCrossRefGoogle Scholar
  37. 37.
    Sarvate, D.G., Seberry, J.: Encryption methods based on combinatorial designs. Ars Combinatoria. 21-A, 237–246Google Scholar
  38. 38.
    Schneier, B.: Description of a New Variable-Length Key, 64-bit Block Cipher (Blowfish). Fast Software Encryption 1993: 191–204Google Scholar
  39. 39.
    Schneier, B.: Description of a New Variable-Length Key, 64-bit Block Cipher (Blowfish). In Fast Software Encryption, Cambridge Security Workshop, Ross J. Anderson (Ed.). Springer-Verlag, London, UK, 191–204 (1993)Google Scholar
  40. 40.
    Schroeder, M.R.: Number Theory in Science and Communication. Springer–Verlag, New York (1984)Google Scholar
  41. 41.
    Seberry, J., Craigen, R.: Orthogonal designs. In: Colbourn, C.J., Dinitz, J.H. (eds.) CRC Handbook of Combinatorial Designs, pp. 400–406. CRC Press, Boca Raton (1996)Google Scholar
  42. 42.
    Seberry, J., Yamada, M.: Hadamard matrices, sequences and block designs. In: Dinitz, J.H., Stinson, D.R. (eds.) Contemporary Design Theory: A Collection of Surveys, pp. 431–560. J. Wiley and Sons, New York (1992)Google Scholar
  43. 43.
    Shimizu, A., Miyaguchi, S.: Fast data encipherment algorithm FEAL, Advances in Cryptology Eurocrypt ’87, pp. 267–280. Springer-Verlag (1988)Google Scholar
  44. 44.
    Singer, J.: A theorem in finite projective geometry and some applications to number theory. Trans. Amer. Math. Soc. 43, 377–385 (1938)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Stanton, R.G., Sprott, D.A.: A family of difference sets. Can. J. Math. 10, 73–77 (1958)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    Stallings, W.: Cryptography and Network Security: Principles and Practices, 3rd Edn. Prentice Hall (2003)Google Scholar
  47. 47.
    Stinson, D.R.: Cryptography: Theory and Practice, 3rd Edn. CRC Press (2005)Google Scholar
  48. 48.
    Stufken, J., Tang, B.: Complete enumeration of two-level orthogonal arrays of strength d with d + 2 constraints. Ann. Statist. 35, 793–814 (2007)MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    Sylvester, J.J.: Thoughts on inverse orthogonal matrices, simultaneous sign-successions, and tessellated pavements in two or more colors, with applications to Newtons rule, ornamental tile-work, and the theory of numbers. Phil. Mag. 34, 461–475 (1867)Google Scholar
  50. 50.
    Turyn, R.J.: An infinite class of Williamson matrices. J. Combin. Theory Ser. A. 12, 319–321 (1972)MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    Webster, A.F., Tavares, E.S.: On the design of S-boxes, Advances in Cryptology - Crypto ’85. Lecture Notes in Computer Science, Vol. 219, pp. 523–534. Springer-Verlag Inc., New York, NY (1985)Google Scholar
  52. 52.
    Williamson, J.: Hadamard’s determinant theorem and the sum of four squares. Duke Math. J. 11, 65–81 (1944)MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Whiteman, A.L.: An infinite family of Hadamard matrices of Williamson type. J. Combin. Theory Ser. A. 14, 334–340 (1973)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Whiteman, A.L.: A family of difference sets. Illinois J. Math. 6, 107–121 (1962)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of MathematicsNational Technical University of AthensAthensGreece

Personalised recommendations