Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 561 Accesses

Abstract

This chapter introduces the reader to the work presented in this thesis. It elucidates the motivation of enhancing optical nonlinear processes in passive resonators, provides an overview of the results obtained during this doctorate work and presents the structure of the thesis.

Jedes Wekzeug trägt den Geist in sich, aus dem heraus es geschaffen worden ist. Werner Heisenberg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The following historical review is largely based on Walther’s book Was ist Licht? [1].

  2. 2.

    In the second half of the seventeenth century, Newton developed a particle-based model for light. However, his theory lost ground to Huygens’ wave theory, which could explain most of the experiments of that time.

  3. 3.

    During the time of this doctorate work, the scientific community celebrated the 50 years anniversary of the first experimental demonstration of the laser by Th. H. Maiman in 1960.

  4. 4.

    A detailed description of the mode of operation of the laser would exceed the frame of this section. A textbook introduction is given in Siegman’s book Lasers [2].

  5. 5.

    This can be either satisfied by a single-frequency continuous-wave (CW) laser, or by a laser emitting several frequencies with a fixed phase relationship, which is the case of a mode-locked laser generating pulses. Since CW operation can be regarded as a special case of a mode-locked laser, the following discussion of pulsed EC’s includes the CW case.

  6. 6.

    Note that multiple pulses can be stored in the EC in the same manner, if the cavity roundtrip time is a multiple of the pulse repetition period.

  7. 7.

    The task of coupling out the new frequencies from the cavity strongly depends on the participating wavelengths.

  8. 8.

    A more detailed overview of EC’s for HHG is given in Appendix 7.1.

  9. 9.

    A number of further exciting applications are summarized in Refs. [4, 5].

References

  1. T. Walther, H. Walther, Was ist Licht? (C. H. Beck, München, 1999)

    Google Scholar 

  2. A. Siegman, Lasers (University Science Books, Sausalito, 1986)

    Google Scholar 

  3. F. Träger, Springer Handbook of Lasers and Optics (Springer, New York, 2007)

    Book  Google Scholar 

  4. D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  5. P. Jaegle, Coherent Sources of XUV Radiation (Springer, New York, 2006)

    Google Scholar 

  6. M.J. Weber, Handbook of Laser Wavelengths (CRC Press, Boca Raton, 1999)

    Google Scholar 

  7. A. Ashkin, G.D. Boyd, J.M. Dziedzic, Resonant optical second harmonic generation and mixing. IEEE J. Quantum Electron. 2, 109 (1966)

    Article  ADS  Google Scholar 

  8. K. Fiedler, S. Schiller, R. Paschotta, P. Kürz, J. Mlynek, Highly efficient frequency-doubling with a doubly resonant monolithic total-internal-reflection ring resonator. Opt. Lett. 18, 1786 (1993)

    Article  ADS  Google Scholar 

  9. Z.Y. Ou, H.J. Kimble, Enhanced conversion efficiency for harmonic-generation with double-resonance. Opt. Lett. 18, 1053 (1993)

    Article  ADS  Google Scholar 

  10. R. Paschotta, P. Kürz, R. Henking, S. Schiller, J. Mlynek, 82% efficient continuous-wave frequency doubling of 1.06 \(\mu \)m with a monolithic MgO:LiNbO3 resonator. Opt. Lett. 19, 1325 (1994)

    Article  ADS  Google Scholar 

  11. V.P. Yanovsky, F.W. Wise, Frequency doubling of 100-fs pulses with 50% efficiency by use of a resonant enhancement cavity. Appl. Phys. Lett. 19, 1952 (1994)

    Google Scholar 

  12. E. Peters, S.A. Diddams, P. Fendel, S. Reinhardt, T.W. Hänsch, T. Udem, A deep-UV optical frequency comb at 205 nm. Opt. Express 17, 9183 (2009)

    Article  ADS  Google Scholar 

  13. J. Mes, E.J. van Duijn, R. Zinkstock, S. Witte, W. Hogervorst, Third-harmonic generation of a continuous-wave Ti:Sapphire laser in asternal resonant cavities. Appl. Phys. Lett. 82, 4423 (2003)

    Article  ADS  Google Scholar 

  14. B. Couillaud, T.W. Hänsch, S.G. MacLean, High power CW sum-frequency generation near 243 nm using two intersecting enhancement cavities. Opt. Commun. 50, 127 (1984)

    Article  ADS  Google Scholar 

  15. M. Theuer, D. Molter, K. Maki, C. Otani, J.A. L’huillier, R. Beigang, Terahertz generation in an actively controlled femtosecond enhancement cavity. Appl. Phys. Lett. 93, 041119 (2008)

    Google Scholar 

  16. F. Ilday, F.X. Kärtner, Cavity-enhanced optical parametric chirped-pulse amplification. Opt. Lett. 31, 637 (2006)

    Article  ADS  Google Scholar 

  17. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H.A. Schuessler, F. Krausz, T.W. Hänsch, A frequency comb in the extreme ultraviolet. Nature 436, 234 (2005)

    Article  ADS  Google Scholar 

  18. R. Jones, K. D. Moll, M. J. Thorpe, J. Ye, Phase-Coherent Frequency Combs in the Vacuum Ultraviolet via High-Harmonic Generation inside a Femtosecond Enhancement Cavity. Phys. Rev. Lett. 94, 193 201 (2005)

    Google Scholar 

  19. D.C. Yost, T.R. Schibli, J. Ye, Efficient output coupling of intracavity high harmonic generation. Opt. Lett. 33, 1099–1101 (2008)

    Article  ADS  Google Scholar 

  20. A. Ozawa, J. Rauschenberger, C. Gohle, M. Herrmann, D.R. Walker, V. Pervak, A. Fernandez, R. Graf, A. Apolonski, R. Holzwarth, F. Krausz, T. Hänsch, and T. Udem, High Harmonic Frequency Combs for High Resolution Spectroscopy. Phys. Rev. Lett. 100, 253901 (2008)

    Google Scholar 

  21. A. Cingöz, D.C. Yost, J. Ye, A. Ruehl, M. Fermann, I. Hartl, Power scaling of high-repetition-rate HHG. International Conference on Ultrafast Phenomena, 2010

    Google Scholar 

  22. B. Bernhardt, A. Ozawa, I. Pupeza, A. Vernaleken, Y. Kobayashi, R. Holzwarth, E. Fill, F. Krausz, T.W. Hänsch, T. Udem, Green enhancement cavity for frequency comb generation in the extreme ultraviolet. CLEO, paper QTuF3, 2011

    Google Scholar 

  23. A. Ozawa, Y. Kobayashi, Intracavity high harmonic generation driven by Yb-fiber based MOPA system at 80 MHz repetition rate. CLEO, paper CThB4, 2011

    Google Scholar 

  24. T. Brabec, F. Krausz, Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 72, 545 (2000)

    Article  ADS  Google Scholar 

  25. F. Krausz, M. Ivanov, Attosecond physics. Rev. Mod. Phys. 81, 163 (2009)

    Article  ADS  Google Scholar 

  26. A. Barty, S. Boutet, M. Bogan, S. Hau-Riege, S. Marchesini, K. Sokolowski-Tinten, N. Stojanovic, R. Tobey, H. Ehrke, A. Cavalleri, S. Düsterer, M. Frank, S. Bajt, B.W. Woods, M.M. Seibert, J. Hajdu, R. Treusch, H.N. Chapman, Ultrafast single-shot diffraction imaging of nanoscale dynamics. Nat. Photogr. 2, 415 (2008)

    Article  Google Scholar 

  27. P.W. Wachulak, M.C. Marconi, R.A. Bartels, C.S. Menoni, J.J. Rocca, Soft X-ray laser holography with wavelength resolution. Opt. Express 15, 10622 (2007)

    Google Scholar 

  28. J. Filevich, K. Kanizay, M.C. Marconi, J.L.A. Chilla, J.J. Rocca, Dense plasma diagnostics with an amplitude-division soft-X-ray laser interferometer based on diffraction gratings. Opt. Lett. 25, 356 (2000)

    Article  ADS  Google Scholar 

  29. P.C. Hinnen, S.E. Werners, S. Stolte, W. Hogervorst, W. Ubachs, XUV-laser spectroscopy of HD at 92–98 nm. Phys. Rev. A 52, 4425 (1995)

    Article  ADS  Google Scholar 

  30. J. Lin, N. Weber, J. Maul, S. Hendel, K. Rott, M. Merkel, G. Schoenhense, U. Kleineberg, At-wavelength inspection of sub-40 nm defects in extreme ultraviolet lithography mask blank by photoemission electron microscopy. Opt. Lett. 32, 1875 (2007)

    Article  ADS  Google Scholar 

  31. A.L. Cavalieri, N. Müller, T. Uphues, V.S. Yakovlev, A. Baltuska, B. Horvath, B. Schmidt, L. Blümel, R. Holzwarth, S. Hendel, M. Drescher, U. Kleineberg, P.M. Echenique, R. Kienberger, F. Krausz, U. Heinzmann, Attosecond spectroscopy in condensed matter. Nature 449, 1029 (2007)

    Article  ADS  Google Scholar 

  32. I. Hartl, T.R. Schibli, A. Marcinkevicius, D.C. Yost, D.D. Hudson, M.E. Fermann, J. Ye, Cavity-enhanced similariton Yb-fiber laser frequency comb: \(3\times 10^{14}\) W/cm\(^2\) peak intensity at 136MHz. Opt. Lett. 32, 2870 (2007)

    Article  ADS  Google Scholar 

  33. I. Pupeza, T. Eidam, J. Rauschenberger, B. Bernhardt, A. Ozawa, E. Fill, A. Apolonski, T. Udem, J. Limpert, Z.A. Alahmed, A.M. Azzeer, A. Tünnermann, T.W. Hänsch, F. Krausz, Power scaling of a high repetition rate enhancement cavity. Opt. Lett. 12, 2052 (2010)

    Article  ADS  Google Scholar 

  34. I. Pupeza, X. Gu, E. Fill, T. Eidam, J. Limpert, A.Tünnermann, F. Krausz, T. Udem, Highly sensitive dispersion measurement of a high-power passive optical resonator using spatial-spectral interferometry. Opt. Express 18, 26184 (2010)

    Google Scholar 

  35. I. Pupeza, E. Fill, F. Krausz, Low-loss VIS/IR-XUV beam splitter for high-power applications. Opt. Express 19, 12108 (2011)

    Google Scholar 

  36. Y.-Y. Yang, F. Süssmann, S. Zherebtsov, I. Pupeza, J. Kaster, D. Lehr, E.-B. Kley, E. Fill, X.-M. Duan, Z.-S. Zhao, F. Krausz, S. Stebbings, M.F. Kling, Optimization and characterization of a highly-efficient diffraction nanograting for MHz XUV pulses. Opt. Express 19, 1955 (2011)

    ADS  Google Scholar 

  37. J. Weitenberg, P. Russbüldt, T. Eidam, I. Pupeza, Transverse mode tailoring in a quasi-imaging high-finesse femtosecond enhancement cavity. Opt. Express 19, 9551 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioachim Pupeza .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pupeza, I. (2012). Introduction. In: Power Scaling of Enhancement Cavities for Nonlinear Optics. Springer Theses. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4100-7_1

Download citation

Publish with us

Policies and ethics