Repair of Radiation Damage and Radiation Injury to the Spinal Cord

  • Timothy E. Schultheiss
Part of the Advances in Experimental Medicine and Biology book series (AEMB)


Radiation myelopathy is a rare but devastating injury to the spinal cord that usually results from an excessive radiation dose. In this chapter, we discuss the traditional and current understandings of the pathogenesis of this injury. A distinction is made between radiation damage, which occurs at the subcellular level, and radiation injury, which occurs at the tissue and organ level in response to radiation damage. Recent findings regarding the amelioration and treatment of both radiation damage and radiation injury are explored. These studies are promising developments but, as always, there are attendant caveats.


Spinal Cord Radiation Damage Radiation Injury Radiation Necrosis Boron Neutron Capture Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schultheiss TE, Stephens LC, Peters LJ. Survival in radiation myelopathy. Int J Radiat Oncol Biol Phys 1986; 12:1765–1769.PubMedCrossRefGoogle Scholar
  2. 2.
    Schultheiss TE, Higgins EH, El-Mahdi AM. The latent period in clinical radiation myelopathy. Int J Radiat Oncol Biol Phys 1984; 10:1109–1115.PubMedCrossRefGoogle Scholar
  3. 3.
    Hopewell JW, Wright EA. The nature of latent cerebral irradiation damage and its modification by hypertension. Br J Radiol 1970; 43(507):161–167.PubMedCrossRefGoogle Scholar
  4. 4.
    Reinhold HS, Kaalen JGAH, Unger-Gils K. Radiation myelopathy of the thoracic spinal cord. Int J Radiat Oncol Biol Phys 1976; 1:651–657.PubMedCrossRefGoogle Scholar
  5. 5.
    Koehler PJ, Verbiest H, Jager J et al. Delayed radiation myelopathy: serial MR-imaging and pathology. Clin Neurol Neurosurg 1996; 98(2):197–201.PubMedCrossRefGoogle Scholar
  6. 6.
    Marcus RG, Million RR. The incidence of myelitis after irradiation of the cervical spinal cord. Radiology 1990; 93:3–8.Google Scholar
  7. 7.
    Schultheiss TE, Stephens LC. Permanent Radiation Myelopathy. Br J Radiol 1992; 65:737–753.PubMedCrossRefGoogle Scholar
  8. 8.
    Dische S, Saunders MI, Warburton MF. Hemoglobin, radiation, morbidity and survival. Int J Radiat Oncol Biol Phys 1986; 12(8):1335–1337.PubMedCrossRefGoogle Scholar
  9. 9.
    Schultheiss TE, Stephens LC, Maor MH. Analysis of the histopathology of radiation myelopathy. Int J Radiat Oncol Biol Phys 1988; 14:27–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Black MJ, Kagan AR. Transverse myelitis. Laryngoscope 1980; 90:847–852.PubMedCrossRefGoogle Scholar
  11. 11.
    Ruifrok AC, Stephens LC, van der Kogel AJ. Radiation response of the rat cervical spinal cord after irradiation at different ages: tolerance, latency and pathology. Int J Radiat Oncol Biol Phys 1994; 29(1):73–79.PubMedCrossRefGoogle Scholar
  12. 12.
    Van der Kogel AJ. Late effects of spinal cord irradiation with 300 kV X-Rays and 15 MeV neutrons. Br J Radiol 1974; 45:393–398.CrossRefGoogle Scholar
  13. 13.
    Van der Kogel AJ. Late effects of radiation on the spinal cord. Dose-effect relationships and pathogenesis. [Ph.D. Thesis]: University of Amsterdam, Amsterdam, Holland; 1979.Google Scholar
  14. 14.
    Nordal RA, Wong CS. Molecular targets in radiation-induced blood-brain barrier disruption. Int J Radiat Oncol Biol Phys 2005; 62(1):279–287.PubMedCrossRefGoogle Scholar
  15. 15.
    Schultheiss TE, Stephens LC, Ang KK et al. Volume effects in rhesus monkey spinal cord. Int J Radiat Oncol Biol Phys 1994; 29:67–72.PubMedCrossRefGoogle Scholar
  16. 16.
    Schultheiss TE, Stephens LC, Jiang GL et al. Radiation myelopathy in primates treated with conventional fractionation. Int J Radiat Oncol Biol Phys 1990; 19:935–940.PubMedCrossRefGoogle Scholar
  17. 17.
    Hubbard BM, Hopewell JW. Changes in the neuroglial cell populations of the rat spinal cord after local X-irradiation. Br J Radiol 1979; 52:816–821.PubMedCrossRefGoogle Scholar
  18. 18.
    Philippo H, Winter EA, van der Kogel AJ et al. Recovery capacity of glial progenitors after in vivo fission-neutron or X irradiation: age dependence, fractionation and low-dose-rate irradiations. Radiat Res 2005; 163(6):636–643.PubMedCrossRefGoogle Scholar
  19. 19.
    Philippo H, Huiskamp R, Winter AM et al. Age dependence of the radiosensitivity of glial progenitors for In vivo fission-neutron and X irradiation. Radiat Res 2000; 154(1):44–53.PubMedCrossRefGoogle Scholar
  20. 20.
    Van der Maazen RW, Kleiboer BJ, Verhagen I et al. Repair capacity of adult rat glial progenitor cells determined by an in vitro clonogenic assay after in vitro or in vivo fractionated irradiation. Int J Radiat Biol 1993; 63(5):661–666.PubMedCrossRefGoogle Scholar
  21. 21.
    Van der Maazen RW, Verhagen I, Kleiboer BJ et al. Repopulation of O-2A progenitor cells after irradiation of the adult rat optic nerve analyzed by an in vitro clonogenic assay. Radiat Res 1992; 132(1):82–86.PubMedCrossRefGoogle Scholar
  22. 22.
    Van der Maazen RW, Verhagen I, Kleiboer BJ et al. Radiosensitivity of glial progenitor cells of the perinatal and adult rat optic nerve studied by an in vitro clonogenic assay. Radiother Oncol 1991; 20(4):258–264.PubMedCrossRefGoogle Scholar
  23. 23.
    Van der Maazen RW, Verhagen I, van der Kogel AJ. An in vitro clonogenic assay to assess radiation damage in rat CNS glial progenitor cells. Int J Radiat Biol 1990; 58(5):835–844.PubMedCrossRefGoogle Scholar
  24. 24.
    Myers R, Rogers MA, Hornsey S. A reappraisal of the roles of glial and vascular elements in the development of white matter necrosis in irradiated rat spinal cord. British Journal of Cancer—Supplement 1986; 7:221–223.Google Scholar
  25. 25.
    Hornsey S, Myers R, Coultas PG et al. Turnover of proliferative cells in the spinal cord after X irradiation and its relation to time-dependent repair of radiation damage. Br J Radiol 1981; 54(648):1081–1085.PubMedCrossRefGoogle Scholar
  26. 26.
    Otsuka S, Coderre JA, Micca PL et al. Depletion of neural precursor cells after local brain irradiation is due to radiation dose to the parenchyma, not the vasculature. Radiat Res 2006; 165(5):582–591.PubMedCrossRefGoogle Scholar
  27. 27.
    Hornsey S, Myers S, Jenkinson T. The reduction of radiation damage to the spinal cord by post-irradiation administration of vasoactive drugs. Int J Radiat Oncol Biol Phys 1990; 18(16):1437–1442.PubMedCrossRefGoogle Scholar
  28. 28.
    Morris GM, Coderre JA, Hopewell JW et al. Boron neutron capture therapy: re-irradiation response of the rat spinal cord. Radiother Oncol 1998; 48(3):313–317.PubMedCrossRefGoogle Scholar
  29. 29.
    Coderre JA, Morris GM, Micca PL et al. Late effects of radiation on the central nervous system: role of vascular endothelial damage and glial stem cell survival. Radiat Res 2006; 166(3):495–503.PubMedCrossRefGoogle Scholar
  30. 30.
    Morris GM, Coderre JA, Micca PL et al. Central nervous system tolerance to boron neutron capture therapy with p-boronophenylalanine. Br J Cancer 1997; 76(12):1623–1629.PubMedCrossRefGoogle Scholar
  31. 31.
    Morris GM, Coderre JA, Hopewell JW et al. Response of the central nervous system to fractionated boron neutron capture irradiation: studies with borocaptate sodium. Int J Radiat Biol 1997; 71(2):185–192.PubMedCrossRefGoogle Scholar
  32. 32.
    Morris GM, Coderre JA, Hopewell JW et al. Boron neutron capture irradiation of the rat spinal cord: effects of variable doses of borocaptate sodium. Radiother Oncol 1996; 39(3):253–259.PubMedCrossRefGoogle Scholar
  33. 33.
    Morris GM, Coderre JA, Bywaters A et al. Boron neutron capture irradiation of the rat spinal cord: histopathological evidence of a vascular-mediated pathogenesis. Radiat Res 1996; 146(3):313–320.PubMedCrossRefGoogle Scholar
  34. 34.
    Morris GM, Coderre JA, Hopewell JW et al. Response of the central nervous system to boron neutron capture irradiation: evaluation using rat spinal cord model. Radiother Oncol 1994; 32(3):249–255.PubMedCrossRefGoogle Scholar
  35. 35.
    Morris GM, Coderre JA, Whitehouse EM et al. Boron neutron capture therapy: a guide to the understanding of the pathogenesis of late radiation damage to the rat spinal cord. Int J Radiat Oncol Biol Phys 1994; 28(5):1107–1112.PubMedCrossRefGoogle Scholar
  36. 36.
    Lyubimova N, Hopewell JW. Experimental evidence to support the hypothesis that damage to vascular endothelium plays the primary role in the development of late radiation-induced CNS injury. Br J Radiol 2004; 77(918):488–492.PubMedCrossRefGoogle Scholar
  37. 37.
    Nieder C, Price RE, Rivera B et al. Effects of insulin-like growth factor-1 (IGF-1) and amifostine in spinal cord reirradiation. Strahlenther Onkol 2005; 181(11):691–695.PubMedCrossRefGoogle Scholar
  38. 38.
    Nordal RA, Nagy A, Pintilie M et al. Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor. Clinical Cancer Research 2004; 10(10):3342–3353.PubMedCrossRefGoogle Scholar
  39. 39.
    Hopewell JW, van der Kogel AJ. Pathophysiological mechanisms leading to the development of late radiation-induced damage to the central nervous system. Frontiers of Radiation Therapy & Oncology 1999; 33:265–275.CrossRefGoogle Scholar
  40. 40.
    Blakemore WF, Palmer AC. Delayed infraction of spinal cord white matter following X-irradiation. Journal of Pathology 1982; 137:273–280.PubMedCrossRefGoogle Scholar
  41. 41.
    Thames HD Jr., Withers HR, Peters LJ et al. Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int J Radiat Oncol Biol Phys 1982; 8(2):219–226.PubMedCrossRefGoogle Scholar
  42. 42.
    Neary GJ. Chromosome aberrations and the theory of RBE. 1. General considerations. International Journal of Radiation Biology & Related Studies in Physics, Chemistry and Medicine 1965; 9(5):477–502.CrossRefGoogle Scholar
  43. 43.
    Schultheiss TE. The radiation dose-response of the human spinal cord. Int J Radiat Oncol Biol Phys 2008; 71(5):1455–1459.PubMedCrossRefGoogle Scholar
  44. 44.
    Ang KK, Jiang GL, Feng Y et al. Extent and kinetics of recovery of occult spinal cord injury. Int J Radiat Oncol Biol Phys 2001; 50(4):1013–1020.PubMedCrossRefGoogle Scholar
  45. 45.
    Ang KK, Price RE, Stephens LC et al. The tolerance of primate spinal cord to re-irradiation. Int J Radiat Oncol Biol Phys 1993; 25:459–464.PubMedCrossRefGoogle Scholar
  46. 46.
    Ruifrok AC, Kleiboer BJ, van der Kogel AJ. Fractionation sensitivity of the rat cervical spinal cord during radiation retreatment. Radiother Oncol 1992; 25(4):295–300.PubMedCrossRefGoogle Scholar
  47. 47.
    Ruifrok AC, Kleiboer BJ, van der Kogel AJ. Reirradiation tolerance of the immature rat spinal cord. Radiother Oncol 1992; 23(4):249–256.PubMedCrossRefGoogle Scholar
  48. 48.
    Van der Kogel AJ. Retreatment tolerance of the spinal cord. Int J Radiat Oncol Biol Phys 1993; 26(4):715–717.PubMedCrossRefGoogle Scholar
  49. 49.
    Wong CS, Hao Y. Long-term recovery kinetics of radiation damage in rat spinal cord. Int J Radiat Oncol Biol Phys 1997; 37(1):171–179.PubMedCrossRefGoogle Scholar
  50. 50.
    Rezvani M, Birds DA, Hodges H et al. Modification of radiation myelopathy by the transplantation of neural stem cells in the rat. Radiat Res 2001; 156(4):408–412.PubMedCrossRefGoogle Scholar
  51. 51.
    Wong ET, Huberman M, Lu XQ et al. Bevacizumab reverses cerebral radiation necrosis. J Clin Oncol 2008; 26(34):5649–5650.PubMedCrossRefGoogle Scholar
  52. 52.
    Liu AK, Macy ME, Foreman NK. Bevacizumab as therapy for radiation necrosis in four children with pontine gliomas. Int J Radiat Oncol Biol Phys 2009; 75(4):1148–1154.PubMedCrossRefGoogle Scholar
  53. 53.
    Levin VA, Luc B, Ping H et al. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys 2010:In Press.Google Scholar
  54. 54.
    Masselos K, Begbie S, Lees JN. Spinal cord infarction in a patient with metastatic non-small cell lung cancer, receiving chemotherapy combined with bevacizumab. Asia-Pacific Journal of Clinical Oncology 2009; 5:151–153.CrossRefGoogle Scholar
  55. 55.
    Sherman JH, Aregawi DG, Lai A et al. Optic neuropathy in patients with glioblastoma receiving bevacizumab. Neurology 2009; 73(22):1924–1926.PubMedCrossRefGoogle Scholar
  56. 56.
    Finger PT. Anti-VEGF bevacizumab (Avastin) for radiation optic neuropathy. American Journal of Ophthalmology 2007; 143(2):335–338.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2012

Authors and Affiliations

  • Timothy E. Schultheiss
    • 1
  1. 1.Department of Radiation OncologyCity of Hope Cancer CenterLos AngelesUSA

Personalised recommendations