M/G/1 Queuing Theory and Applications

  • Giovanni Giambene
Chapter

Abstract

The M/G/1 theory is a powerful tool, generalizing the solution of Markovian queues to the case of general service time distributions. There are many applications of the M/G/1 theory in the field of telecommunications; for instance, it can be used to study the queuing of fixed-size packets to be transmitted on a given link (i.e., M/D/1 case). Moreover, this theory yields results which are compatible with the M/M/1 theory, based on birth–death Markov chains.

Keywords

Microwave Assure BASTA 

Supplementary material

108201_2_En_6_MOESM1_ESM.pdf (402 kb)
Lesson 7 (PDF 401 kb)
108201_2_En_6_MOESM2_ESM.pptx (807 kb)
Lesson 7 (PPTX 807 kb)
108201_2_En_6_MOESM3_ESM.pdf (156 kb)
Lesson 9 (PDF 156 kb)
108201_2_En_6_MOESM4_ESM.pptx (461 kb)
Lesson 9 (PPTX 460 kb)
108201_2_En_6_MOESM5_ESM.pdf (125 kb)
Lesson 11 (PDF 125 kb)
108201_2_En_6_MOESM6_ESM.pptx (406 kb)
Lesson 11 (PPTX 406 kb)
108201_2_En_6_MOESM7_ESM.pdf (209 kb)
Lesson 19 (PDF 208 kb)
108201_2_En_6_MOESM8_ESM.pptx (509 kb)
Lesson 19 (PPTX 509 kb)

References

  1. 1.
    Kleinrock L (1976) Queuing systems. Wiley, New YorkGoogle Scholar
  2. 2.
    Hayes JF (1986) Modeling and analysis of computer communication networks. Plenum Press, New YorkGoogle Scholar
  3. 3.
    Kleinrock L, Gale R (1996) Queuing systems. Wiley Interscience publication, New YorkGoogle Scholar
  4. 4.
    Gross D, Harris CM (1974) Fundamentals of queueing theory. Wiley, New YorkMATHGoogle Scholar
  5. 5.
    Andreadis A, Giambene G (2002) Protocols for high-efficiency wireless networks. Kluwer, New YorkGoogle Scholar
  6. 6.
    Ramsay CM (2007) Exact waiting time and queue size distributions for equilibrium M/G/1 queues with Pareto service. J Queueing Syst 57(4):147–155CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Giambene G, Hadzic-Puzovic S (2013) Downlink performance analysis for broadband wireless systems with multiple packet sizes. Perform Eval 70(5):364–386CrossRefGoogle Scholar
  8. 8.
    Heines TS (1979) Buffer behavior in computer communication systems. IEEE Trans Comput c-28(8):573–576CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Giovanni Giambene
    • 1
  1. 1.Department of Information Engineering and Mathematical SciencesUniversity of SienaSienaItaly

Personalised recommendations