Hairy Roots: An Ideal Platform for Transgenic Plant Production and Other Promising Applications

  • Abdullah B. Makhzoum
  • Pooja Sharma
  • Mark A. Bernards
  • Jocelyne Trémouillaux-Guiller
Chapter
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 42)

Abstract

The infection of plants by Agrobacterium rhizogenes results in a “hairy root”phenotype characterized by rapid growth in hormone-free medium, an unusual ageotropism and extensive lateral branching. The pathological rhizogenicity of A. rhizogenes arises from the stable insertion of a region of the A. rhizogenes Ri (root-inducing) plasmid into the plant nuclear genome. This plasmid can be engineered to contain foreign genes, which can also be stably inserted into the host genome. As such, A. rhizogenes represents a viable alternative for the genetic transformation of plant tissue not readily transformed by A. tumefaciens. However, to be effective as a genetic transformation system, the routine regeneration of full plants from hairy root cultures is essential. In this chapter, we report on some important features of hairy roots, describe recent progress in the regeneration of plants from A. rhizogenes-derived hairy roots and provide a summary of selected applications. These include the use of A. rhizogenes as an efficient system to boost rhizogenesis in recalcitrant plant species and to create new plant varieties and the use of hairy root cultures and A. rhizogenes-engineered plants for secondary metabolite production, in phytoremediation and for the production of recombinant proteins (i.e. molecular farming) for the healthcare industry.

Keywords

Biomass Polycyclic Aromatic Hydrocarbon Morphine Indole Digoxin 

References

  1. 1.
    Riker AJ et al (1930) Studies on infectious hairy root of nursery apple trees. J Agr Res 41:507Google Scholar
  2. 2.
    Willmitzer L et al (1982) DNA from Agrobacterium rhizogenes in transferred to and expressed in axenic hairy root plant tissues. Mol Gen Genet 186:16CrossRefGoogle Scholar
  3. 3.
    White FF, Nester EW (1980) Hairy root: plasmids encode virulence traits in Agrobacterium rhizogenes. J Bacteriol 141:1134PubMedGoogle Scholar
  4. 4.
    Chilton M-D et al (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295:432CrossRefGoogle Scholar
  5. 5.
    Tepfer D et al (1989) Use of roots transformed by Agrobacterium rhizogenes in rhizosphere research: applications in studies of cadmium assimilation from sewage sludges. Plant Mol Biol 13:295CrossRefPubMedGoogle Scholar
  6. 6.
    Hassan S et al (2008) Conditions for extraction of monoclonal antibodies targeted to different subcellular compartments in transgenic tobacco plants. Plant Biotechnol J 6:733CrossRefPubMedGoogle Scholar
  7. 7.
    Saito K et al (1992) Transgenic medicinal plants: Agrobacterium-mediated foreign gene transfer and production of secondary metabolites. J Nat Prod 55:149CrossRefPubMedGoogle Scholar
  8. 8.
    Giri A et al (2001) Influence of different strains of Agrobacterium rhizogenes on induction of hairy roots and artemisinin production in Artemisia annua. Curr Sci 81:378Google Scholar
  9. 9.
    Delannoy M et al (2008) Identification of peptidases in Nicotiana tabacum leaf intercellular fluid. Proteomics 8:2285CrossRefPubMedGoogle Scholar
  10. 10.
    Ayala-Silva T et al (2007) Agrobacterium rhizogenes mediated-transformation of Asimina triloba L. cuttings. Pak J Biol Sci 10:132CrossRefPubMedGoogle Scholar
  11. 11.
    Spök A et al (2008) Evolution of a regulatory framework for pharmaceuticals derived from genetically modified plants. Trends Biotechnol 26:506CrossRefPubMedGoogle Scholar
  12. 12.
    De Muynck B et al (2010) Production of antibodies in plants: status after twenty years. Plant Biotechnol J 8:529CrossRefPubMedGoogle Scholar
  13. 13.
    Thimmaraju R et al (2003) Food-grade chemical and biological agents permeabilize red beet hairy roots, assisting the release of betalaines. Biotechnol Prog 19:1274CrossRefPubMedGoogle Scholar
  14. 14.
    Eapen S et al (2003) Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor. Environ Res 91:127CrossRefPubMedGoogle Scholar
  15. 15.
    Boominathan R, Doran PM (2003) Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species. J Biotechnol 101:131CrossRefPubMedGoogle Scholar
  16. 16.
    Boisson-Dernier A et al (2001) Hairy roots of Medicago truncatula as tools for studying nitrogen-fixing and endomycorrhizal symbioses. Mol Plant Microbe Interact 14:693CrossRefGoogle Scholar
  17. 17.
    Odegaard E et al (1997) Agravitropic behaviour of roots of rapeseed (Brassica napus L.) transformed by Agrobacterium rhizogenes. J Gravit Physiol 4:5PubMedGoogle Scholar
  18. 18.
    Lincoln C et al (1992) Hormone-resistant mutants of Arabidopsis have an attenuated response to Agrobacterium strains. Plant Physiol 98:979CrossRefPubMedGoogle Scholar
  19. 19.
    Lorence A et al (2004) Camptothecin and 10-hydroxycamptothecin from Camptotheca acuminata hairy roots. Plant Cell Rep 22:437CrossRefPubMedGoogle Scholar
  20. 20.
    Putalun W et al (2007) Improvement of artemisinin production by chitosan in hairy root cultures of Artemisia annua L. Biotechnol Lett 29:1143CrossRefPubMedGoogle Scholar
  21. 21.
    Subroto MA et al (1996) Coculture of genetically transformed roots and shoots for synthesis, translocation, and biotransformation of secondary metabolites. Biotechnol Bioeng 49:481CrossRefPubMedGoogle Scholar
  22. 22.
    Marconi PL et al (2007) How polyamine synthesis inhibitors and cinnamic acid affect tropane alkaloid production. Appl Biochem Biotechnol 136:63CrossRefPubMedGoogle Scholar
  23. 23.
    Yang SH et al (2006) Studies on chemical constituents of hairy root of Cassia obtusifolia. China J Chinese Materia Medica 31:217Google Scholar
  24. 24.
    Diouf D et al (1995) Hairy root nodulation of Casuarina glauca: a system for the study of symbiotic gene expression in an actinorhizal tree. Mol Plant Microbe Interact 8:532CrossRefPubMedGoogle Scholar
  25. 25.
    Bhadra R et al (1993) Production of indole alkaloids by selected hairy root lines of Catharanthus roseus. Biotechnol Bioeng 41:581CrossRefPubMedGoogle Scholar
  26. 26.
    Suresh B et al (2005) Uptake and degradation of DDT by hairy root cultures of Cichorium intybus and Brassica juncea. Chemosphere 61:1288CrossRefPubMedGoogle Scholar
  27. 27.
    Hughes EH et al (2004) Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metab Eng 6:268CrossRefPubMedGoogle Scholar
  28. 28.
    Hong SB et al (2006) Terpenoid indole alkaloid production by Catharanthus roseus hairy roots induced by Agrobacterium tumefaciens harboring rol ABC genes. Biotechnol Bioeng 93:386CrossRefPubMedGoogle Scholar
  29. 29.
    Batra J et al (2004) Growth and terpenoid indole alkaloid production in Catharanthus roseus hairy root clones in relation to left- and right-termini-linked Ri T-DNA gene integration. Plant Cell Rep 23:148CrossRefPubMedGoogle Scholar
  30. 30.
    Alpizar E et al (2006) Efficient production of Agrobacterium rhizogenes-transformed roots and composite plants for studying gene expression in coffee roots. Plant Cell Rep 25:959CrossRefPubMedGoogle Scholar
  31. 31.
    Katavić V, Jelaska S (1991) The influence of plant growth regulators on callus induction in pumpkin (Cucurbita pepo L.) hairy roots. Int J Dev Biol 35:265PubMedGoogle Scholar
  32. 32.
    Balen B et al (2004) Formation of embryonic callus in hairy roots of pumpkins (Cucurbita Pepo L.). In Vitro Cell Dev Biol Plant 40:182CrossRefGoogle Scholar
  33. 33.
    Bercetche J et al (1987) Morphogenetic and cellular reorientations induced by Agrobacterium rhizogenes (strains 1855, 2659 and 8196) on carrot, pea and tobacco. Plant Sci 52:195CrossRefGoogle Scholar
  34. 34.
    Alpizar E et al (2008) Agrobacterium rhizogenes-transformed roots of coffee (Coffea arabica): conditions for long-term proliferation, and morphological and molecular characterization. Ann Bot 101:929CrossRefPubMedGoogle Scholar
  35. 35.
    Park S-U, Facchini PJ (2000) Agrobacterium rhizogenes-mediated transformation of opium poppy, Papaver somniferum L., and California poppy, Eschscholzia californica Cham. root cultures. J Exp Bot 51:1005CrossRefPubMedGoogle Scholar
  36. 36.
    Shi HP, Lindemann P (2006) Expression of recombinant Digitalis lanata EHRH. cardenolide 16′-O-glucohydrolase in Cucumis sativus L. hairy roots. Plant Cell Rep 25:1193CrossRefPubMedGoogle Scholar
  37. 37.
    Xiang TH et al (2005) Hairy root induced by wild-type Agrobacterium rhizogenes K599 in soybean, cucumber and garden balsam in vivo. Yi Chuan 27:783PubMedGoogle Scholar
  38. 38.
    Abbasi BH et al (2007) Light-enhanced caffeic acid derivatives biosynthesis in hairy root cultures of Echinacea purpurea. Plant Cell Rep 26:1367CrossRefPubMedGoogle Scholar
  39. 39.
    Lee SY et al (2007) Growth and rutin production in hairy root cultures of buckwheat (Fagopyrum esculentum M.). Prep Biochem Biotechnol 37:239CrossRefPubMedGoogle Scholar
  40. 40.
    Tiwari RK et al (2007) Genetic transformation of Gentiana macrophylla with Agrobacterium rhizogenes: growth and production of secoiridoid glucoside gentiopicroside in transformed hairy root cultures. Plant Cell Rep 26:199CrossRefPubMedGoogle Scholar
  41. 41.
    Doyle EA, Lambert KN (2003) Meloidogyne javanica chorismate mutase 1 alters plant cell development. Mol Plant Microbe Interact 16:123CrossRefPubMedGoogle Scholar
  42. 42.
    Cho HJ et al (2004) Use of the tobacco feedback-insensitive anthranilate synthase gene (ASA2) as a selectable marker for legume hairy root transformation. Plant Cell Rep 23:104CrossRefPubMedGoogle Scholar
  43. 43.
    Lozovaya VV et al (2004) Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani. Plant Physiol Biochem 42:671CrossRefPubMedGoogle Scholar
  44. 44.
    Kereszt A et al (2007) Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat Protoc 2:948CrossRefPubMedGoogle Scholar
  45. 45.
    Govindarajulu M et al (2008) Evaluation of constitutive viral promoters in transgenic soybean roots and nodules. Mol Plant Microbe Interact 21:1027CrossRefPubMedGoogle Scholar
  46. 46.
    Hayashi S et al (2008) Molecular analysis of lipoxygenase associated with nodule development in soybean. Mol Plant Microbe Interact 21:843CrossRefPubMedGoogle Scholar
  47. 47.
    Wang X et al (2009) Overexpressing AtPAP15 enhances phosphorus efficiency in soybean. Plant Physiol 151:233CrossRefPubMedGoogle Scholar
  48. 48.
    Kouchi H et al (1999) Rice ENOD40: isolation and expression analysis in rice and transgenic soybean root nodules. Plant J 18:121CrossRefPubMedGoogle Scholar
  49. 49.
    Chang CK et al (2005) Hairy root cultures of Gynostemma pentaphyllum (Thunb.). Makino: a promising approach for the production of gypenosides as an alternative of ginseng saponins. Biotechnol Lett 27:1165CrossRefPubMedGoogle Scholar
  50. 50.
    Christensen B et al (2008) Transformation of Kalanchoe blossfeldiana with rol-genes is useful in molecular breeding towards compact growth. Plant Cell Rep 27:1485CrossRefPubMedGoogle Scholar
  51. 51.
    Li J et al (2009) Rapid in planta evaluation of root expressed transgenes in chimeric soybean plants. Plant Cell Rep 29:113CrossRefPubMedGoogle Scholar
  52. 52.
    Farkya S, Bisaria VS (2008) Exogenous hormones affecting morphology and biosynthetic potential of hairy root line (LYR2i) of Linum album. J Biosci Bioeng 105:140CrossRefPubMedGoogle Scholar
  53. 53.
    Yang SH et al (2006) Ri plasmid transformation of Glycyrrhiza uralensis and effects of some factors on growth of hairy roots. China J Chinese Materia Medica 31:875Google Scholar
  54. 54.
    Peres L et al (2001) Shoot regeneration capacity from roots and transgenic hairy roots of tomato cultivars and wild related species. Plant Cell Tiss Org Cult 65:37CrossRefGoogle Scholar
  55. 55.
    Zhang HC et al (2009) Enhanced flavonoid production in hairy root cultures of Glycyrrhiza uralensis Fisch by combining the over-expression of chalcone isomerase gene with the elicitation treatment. Plant Cell Rep 28:1205CrossRefPubMedGoogle Scholar
  56. 56.
    Nunes IS et al (2009) Menthol and geraniol biotransformation and glycosylation capacity of Levisticum officinale hairy roots. Planta Med 75:387CrossRefPubMedGoogle Scholar
  57. 57.
    Woods R et al (2008) Hairy-root organ cultures for the production of human acetylcholinesterase. BMC Biotechnol 8:95CrossRefPubMedGoogle Scholar
  58. 58.
    Shimamura M et al (2007) 2-Hydroxyisoflavanone dehydratase is a critical determinant of isoflavone productivity in hairy root cultures of Lotus japonicus. Plant Cell Physiol 48:1652CrossRefPubMedGoogle Scholar
  59. 59.
    Mallol A et al (2001) Ginsenoside production in different phenotypes of Panax ginseng transformed roots. Phytochemistry 57:365CrossRefPubMedGoogle Scholar
  60. 60.
    Wasson AP et al (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18:1617CrossRefPubMedGoogle Scholar
  61. 61.
    Phongprueksapattana S et al (2008) Mitragyna speciosa: hairy root culture for triterpenoid production and high yield of mitragynine by regenerated plants. Z Naturforsch C 63:691PubMedGoogle Scholar
  62. 62.
    Shih SM, Doran PM (2009) In vitro propagation of plant virus using different forms of plant tissue culture and modes of culture operation. J Biotechnol 143:198CrossRefPubMedGoogle Scholar
  63. 63.
    Zhou L et al (2007) Stimulation of saponin production in Panax ginseng hairy roots by two oligosaccharides from Paris polyphylla var. yunnanensis. Biotechnol Lett 29:631CrossRefPubMedGoogle Scholar
  64. 64.
    Le Flem-Bonomme V et al (2004) Hairy root induction of Papaver somniferum var. album, a difficult-to-transform plant, by A. rhizogenes LBA 9402. Planta 218:890CrossRefGoogle Scholar
  65. 65.
    Blanco FA et al (2009) A small GTPase of the rab family is required for root hair formation and preinfection stages of the common bean-rhizobium symbiotic association. Plant Cell 21:2797CrossRefPubMedGoogle Scholar
  66. 66.
    Tzfira T et al (1996) Agrobacterium rhizogenes-mediated DNA transfer in Pinus halepensis Mill. Plant Cell Rep 16:26CrossRefGoogle Scholar
  67. 67.
    Sudha CG et al (2003) Production of ajmalicine and ajmaline in hairy root cultures of Rauvolfia micrantha Hook f., a rare and endemic medicinal plant. Biotechnol Lett 25:631CrossRefPubMedGoogle Scholar
  68. 68.
    Zhou X et al (2007) Salidroside production by hairy roots of Rhodiola sachalinensis obtained after transformation with Agrobacterium rhizogenes. Biol Pharm Bull 30:439CrossRefPubMedGoogle Scholar
  69. 69.
    Boominathan R, Doran PM (2003) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol Bioeng 83:158CrossRefPubMedGoogle Scholar
  70. 70.
    Wen F et al (1999) Effect of pectin methylesterase gene expression on pea root development. Plant Cell 11:1129PubMedGoogle Scholar
  71. 71.
    Kumar V et al (2005) Genetically modified hairy roots of Withania somnifera Dunal: a potent source of rejuvenating principles. Rejuvenation Res 8:37CrossRefPubMedGoogle Scholar
  72. 72.
    Yogananth N, Jothi Basu M (2009) TLC method for the determination of plumbagin in hairy root culture of Plumbago rosea L. Global J Biotechnol Biochem 4:66Google Scholar
  73. 73.
    Hodges LD et al (2004) Agrobacterium rhizogenes GALLS protein substitutes for Agrobacterium tumefaciens single-stranded DNA-binding protein VirE2. J Bacteriol 186:3065CrossRefPubMedGoogle Scholar
  74. 74.
    Tzfira T et al (2004) Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature 431:87CrossRefPubMedGoogle Scholar
  75. 75.
    Tzfira T et al (2004) Agrobacterium T-DNA integration: molecules and models. Trends Genet 20:375CrossRefPubMedGoogle Scholar
  76. 76.
    Lacroix B et al (2005) The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation. EMBO J 24:428CrossRefPubMedGoogle Scholar
  77. 77.
    Veena V, Taylor C (2007) Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell Dev Biol—Plant 43:383CrossRefGoogle Scholar
  78. 78.
    Camilleri C, Jouanin L (1991) TR-DNA region carrying the auxin synthesis gene of the Agrobacterium rhizogenes agropine type plasmid PRiAA4: nucleotide sequence analysis and introduction into tobacco plants. Mol Plant Microbe Interact 4:155CrossRefPubMedGoogle Scholar
  79. 79.
    De Paolis A et al (1985) Localization of agropine-synthesizing functions in the TR regions of the root inducing plasmid of Agrobacterium rhizogenes 1865. Plasmid 13:1CrossRefPubMedGoogle Scholar
  80. 80.
    Goldmann A et al (1968) Découvertes de nouvelles substances, les opines produites par les cellules des tumeurs. Quelques particularités de diverses souches d’Agrobacterium tumefaciens. C R Sci Biol 162:630Google Scholar
  81. 81.
    Petit A et al (1970) Recherches sur les guanidines des tissues de crown gall. Mise en évidence d’une relation biochimique spécifique entre les souches d’Agrobacterium tumefaciens et les tumeurs qu’elles induisent. Physiol Vég 8:205Google Scholar
  82. 82.
    Tepfer D, Tempé J (1981) Production d’agropine par de racines formées sous l’action d’Agrobacterium rhizogenes, souche A4. C R Acad Sci Paris 292:153Google Scholar
  83. 83.
    Slightom JL et al (1986) Nucleotide sequence analysis of TL-DNA of Agrobacterium rhizogenes agropine type plasmid: identification of open-reading frames. J Biol Chem 261:108PubMedGoogle Scholar
  84. 84.
    White FF et al (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33PubMedGoogle Scholar
  85. 85.
    Davioud E et al (1988) Cucumopine – a new T-DNA-Encoded opine in hairy root crown gall. Phytochemistry 27:2429CrossRefGoogle Scholar
  86. 86.
    Jouanin L et al (1987) Transfer of a 4.3 kb fragment of the TL-DNA of Agrobacterium rhizogenes strain A4 confers the pRi transformed phenotype to regenerated tobacco plants. Plant Sci 53:53CrossRefGoogle Scholar
  87. 87.
    Schmülling T et al (1998) Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7:2621Google Scholar
  88. 88.
    Palazón J et al (1997) Effect of rol genes from Agrobacterium rhizogenes TL-DNA on nicotine production on tobacco root cultures. Plant Physiol Biochem 35:155Google Scholar
  89. 89.
    Nilsson O, Olsson O (1997) Getting to the root: the role of Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 100:463CrossRefGoogle Scholar
  90. 90.
    Nilsson O et al (1997) The Agrobacterium rhizogenes rol B and rolC promoters are expressed in pericycle cells competent to serve as root initials in transgenic hybrid aspen. Physiol Plant 100:456CrossRefGoogle Scholar
  91. 91.
    Estruch JJ et al (1991) The plant oncogenes rolC is responsible for the release of cytokinins from glucoside conjugates. EMBO J 10:2889PubMedGoogle Scholar
  92. 92.
    Estruch JJ et al (1991) The protein encoded by the rolB plant oncogene hydrolyses indole glucosides. EMBO J 10:3125PubMedGoogle Scholar
  93. 93.
    Faiss M et al (1996) Chemically induced expression of the rolC-encoded β-glucosidase in transgenic tobacco plants and analysis of cytokinin metabolism: rolC does not hydrolyze endogenous cytokinin glucosides in planta. Plant J 10:33CrossRefGoogle Scholar
  94. 94.
    Gorpenchenko T et al (2006) The Agrobacterium rhizogenes rolC-gene-induced somatic embryogenesis and shoot organogenesis in Panax ginseng transformed calluses. Planta 223:457CrossRefPubMedGoogle Scholar
  95. 95.
    Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26:318CrossRefPubMedGoogle Scholar
  96. 96.
    Altabella T et al (1995) Effect of the rol genes from Agrobacterium rhizogenes on polyamine metabolism in tobacco roots. Physiol Plant 95:479CrossRefGoogle Scholar
  97. 97.
    Taneja J et al (2010) Effect of loss of T-DNA genes on MIA biosynthetic pathway gene regulation and alkaloid accumulation in Catharanthus roseus hairy roots. Plant Cell Rep 29:1119CrossRefPubMedGoogle Scholar
  98. 98.
    Wysokinska H, Chmiel A (1997) Transformed root cultures for biotechnology. Acta Biotechnol 17:131CrossRefGoogle Scholar
  99. 99.
    Canto-Canche B, Loyola-Vargas VM (1999) Chemicals from roots, hairy roots, and their applications. Adv Exp Med Biol 464:235CrossRefPubMedGoogle Scholar
  100. 100.
    David C et al (1984) Conservation of T-DNA in plants regenerated from hairy root cultures. Bio/Technol 2:73CrossRefGoogle Scholar
  101. 101.
    Rigano MM, Walmsley AM (2005) Expression systems and developments in plant-made vaccines. Immunol Cell Biol 83:271CrossRefPubMedGoogle Scholar
  102. 102.
    Guillon S et al (2008) Hairy roots: a powerful tool for plant biotechnological advances. In: Ramawat KG, Mérillon JM (eds) Bioactive molecules and medicinal plants. Springer, Berlin, Heidelberg, pp 285–295CrossRefGoogle Scholar
  103. 103.
    Jung G, Tepfer D (1987) Use of genetic transformation by the Ri T-DNA of Agrobacterium rhizogenes to stimulate biomass and tropane alkaloid production in Atropa belladonna and Calystegia sepium roots. Plant Sci 50:145CrossRefGoogle Scholar
  104. 104.
    Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37:959CrossRefPubMedGoogle Scholar
  105. 105.
    Phelep M et al (1991) Transformation and regeneration of a nitrogen-fixing tree, Allocasuarina Verticillata Lam. Nat Biotechnol 9:461CrossRefGoogle Scholar
  106. 106.
    Kim YS, Soh WY (1996) Amyloplast distribution in hairy roots induced by infection with Agrobacterium rhizogenes. Biol Sci Space 10:102CrossRefPubMedGoogle Scholar
  107. 107.
    Pavli O et al (2010) BNYVV-derived dsRNA confers resistance to rhizomania disease of sugar beet as evidenced by a novel transgenic hairy root approach. Transgenic Res 19:915CrossRefPubMedGoogle Scholar
  108. 108.
    Shen WH et al (1988) Hairy roots are more sensitive to auxin than normal roots. Proc Natl Acad Sci USA 85:3417CrossRefPubMedGoogle Scholar
  109. 109.
    Van Sluys M-A, Tempé J (1989) Behavior of the maize transposable element activator in Daucus carota. Mol Gen Genet 219:313CrossRefGoogle Scholar
  110. 110.
    Lee MH et al (2004) Agrobacterium rhizogenes-mediated transformation of Taraxacum platycarpum and changes of morphological characters. Plant Cell Rep 22:822CrossRefPubMedGoogle Scholar
  111. 111.
    Gasser CS, Fraley RT (1989) Genetically engineering plants for crop improvement. Science 244:1293CrossRefPubMedGoogle Scholar
  112. 112.
    Flores H et al (1987) Secondary metabolites from root cultures. Trends Biotechnol 5:64CrossRefGoogle Scholar
  113. 113.
    Sheki H et al (2005) Hairy root-activation tagging: a high-throughput system for activation tagging in transformed hairy roots. Plant Mol Biol 59:793CrossRefGoogle Scholar
  114. 114.
    Guillon S et al (2006) Harnessing the potential of hairy roots: dawn of a new era. Trends Biotechnol 24:403CrossRefPubMedGoogle Scholar
  115. 115.
    Ayliffe MA et al (2007) A barley activation tagging system. Plant Mol Biol 64(3):329CrossRefPubMedGoogle Scholar
  116. 116.
    Busov V et al (2011) Activation tagging is an effective gene tagging system in Populus. Tree Genet Genom 7:91CrossRefGoogle Scholar
  117. 117.
    Risher H et al (2006) Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc Natl Acad Sci USA 103:5614CrossRefGoogle Scholar
  118. 118.
    Choi D-W et al (2005) Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Rep 23:557CrossRefPubMedGoogle Scholar
  119. 119.
    Kumagai H, Kouchi H (2003) Gene silencing by expression of hairpin RNA in Lotus japonicus roots and root nodules. Mol Plant Microbe Interact 16:663CrossRefPubMedGoogle Scholar
  120. 120.
    Yi J et al (2010) A single repeat MYB transcription factor, GmMYB176, regulates CHS8 gene expression and affects isoflavonoid biosynthesis in soybean. Plant J 62:1019PubMedGoogle Scholar
  121. 121.
    DeBoer K et al (2011) RNAi-mediated down-regulation of ornithine decarboxylase (ODC) leads to reduced nicotine and increased anatabine levels in transgenic Nicotiana tabacum L. Phytochemistry 72:344CrossRefPubMedGoogle Scholar
  122. 122.
    Frommer WB, Beachy R (2003) A future for plant biotechnology? Naturally! Curr Opin Biotechnol 6:147Google Scholar
  123. 123.
    Stafford HA (2000) Crown gall disease and Agrobacterium tumefaciens: a study of the history, present knowledge, missing information and impact on molecular genetics. Bot Rev 66:99CrossRefGoogle Scholar
  124. 124.
    Pythoud F et al (1987) Agrobacterium rhizogenes conferred by the vir region of pTiBo542: application to genetic engineering of poplar. Biotechnology 5:1323CrossRefGoogle Scholar
  125. 125.
    Jouanin L (1984) Restriction map of agropine-type plasmid and its homologies with Ti-Plasmids. Plasmid 12:91CrossRefPubMedGoogle Scholar
  126. 126.
    Stachel SE, Nester EW (1986) The genetic and transcriptional organization of the vir region of the A6 Ti plasmid of Agrobacterium. EMBO J 5:1445PubMedGoogle Scholar
  127. 127.
    Hooykaas PJ, Schilperoort RA (1992) Agrobacterium and plant genetic engineering. Plant Mol Biol 19:15CrossRefPubMedGoogle Scholar
  128. 128.
    Hodges LD et al (2009) Agrobacterium rhizogenes GALLS gene encodes two secreted proteins required for gene transfer to plants. J Bacteriol 191:325CrossRefGoogle Scholar
  129. 129.
    Ream W (2009) Agrobacterium tumefaciens and Agrobacterium rhizogenes use different proteins to transport bacterial DNA into the plant cell nucleus. Microb Biotechnol 2:416CrossRefPubMedGoogle Scholar
  130. 130.
    Chupeau Y (2001) Les raffinements sexuels d’une bacteria du sol au service du génie génétique. m/s synthèse 17:856–866Google Scholar
  131. 131.
    Cascales E, Christie PJ (2004) Definition of a bacterial Type IV secretion pathway for a DNA substrate. Science 304:1170CrossRefPubMedGoogle Scholar
  132. 132.
    Tzfira T, Citovsky V (2006) Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Curr Opin Biotechnol 17:147CrossRefPubMedGoogle Scholar
  133. 133.
    Hodges LD et al (2006) Agrobacterium rhizogenes GALLS protein contains domains for ATP binding, nuclear localization, and type IV sécrétion. J Bacteriol 188:8222CrossRefPubMedGoogle Scholar
  134. 134.
    Gelvin SB (2009) Agrobacterium in the genomics age. Plant Physiol 150:1665CrossRefPubMedGoogle Scholar
  135. 135.
    Pitzschke A, Heribert H (2010) New insights into an old story: Agrobacterium-induced tumor formation in plants by plant transformation. EMBO J 29:1021CrossRefPubMedGoogle Scholar
  136. 136.
    Ward DV et al (2002) Agrobacterium VirE2 gets the VIP1 treatment in plant nuclear import. Trends Plant Sci 7:1CrossRefPubMedGoogle Scholar
  137. 137.
    Lacroix B et al (2008) Association of the Agrobacterium T-DNA-protein complex with plant nucleosomes. Proc Natl Acad Sci USA 105:15429CrossRefPubMedGoogle Scholar
  138. 138.
    Shaked H et al (2005) High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci USA 102:12265CrossRefPubMedGoogle Scholar
  139. 139.
    White PR, Braun AC (1941) Crown gall production by bacteria-free tumor tissues. Science 94:239CrossRefPubMedGoogle Scholar
  140. 140.
    Meyer AD et al (2000) A molecular overview: functional analysis of Agrobacterium rhizogenes T-DNA genes. Plant Microb Interact J 5:93Google Scholar
  141. 141.
    Jian B et al (2009) Agrobacterium rhizogenes-mediated transformation of Superroot-derived Lotus corniculatus plants: a valuable tool for functional genomics. BMC Plant Biol 9:78CrossRefPubMedGoogle Scholar
  142. 142.
    Ackermann C (1977) C. pflanzen aus Agrobacterium rhizogenes-tumoren aus Nicotiana tabacum. Plant Sci Lett 8:23CrossRefGoogle Scholar
  143. 143.
    Guerche P et al (1987) Genetic transformation of oilseed rape (Brassica napus) by the Ri T-DNA of Agrobacterium rhizogenes and analysis of inheritance of the transformed phenotype. Mol Gen Genet 206:382CrossRefGoogle Scholar
  144. 144.
    Crane C et al (2006) Transgenic Medicago truncatula plants obtained from Agrobacterium tumefaciens-transformed roots and Agrobacterium rhizogenes-transformed hairy roots. Planta 223:1344CrossRefPubMedGoogle Scholar
  145. 145.
    Zdravkovic-Korac S et al (2004) Agrobacterium rhizogenes-mediated DNA transfer to Aesculus hippocastanum L. and the regeneration of transformed plants. Plant Cell Rep 22:698CrossRefPubMedGoogle Scholar
  146. 146.
    Koike Y et al (2003) Horticultural characterization of Angelonia salicariifolia plants transformed with wild-type strains of Agrobacterium rhizogenes. Plant Cell Rep 21:981CrossRefPubMedGoogle Scholar
  147. 147.
    Cseke LJ et al (2007) High efficiency poplar transformation. Plant Cell Rep 26:1529CrossRefPubMedGoogle Scholar
  148. 148.
    Suzuki H et al (1993) Deletion analysis and localization of SbPRP1, a soybean cell wall protein gene, in roots of transgenic tobacco and cowpea. Plant Mol Biol 21:109CrossRefPubMedGoogle Scholar
  149. 149.
    Choi PS et al (2004) Plant regeneration from hairy-root cultures transformed by infection with Agrobacterium rhizogenes in Catharanthus roseus. Plant Cell Rep 22:828CrossRefPubMedGoogle Scholar
  150. 150.
    Subotic A et al (2004) Direct regeneration of shoots from hairy root cultures of Centaurium erythraea inoculated with Agrobacterium rhizogenes. Biol Plant 47:617CrossRefGoogle Scholar
  151. 151.
    Subotic A et al (2009) Spontaneous plant regeneration and production of secondary metabolites from hairy root cultures of Centaurium erythraea Rafn. Methods Mol Biol 547:205CrossRefPubMedGoogle Scholar
  152. 152.
    Murthy HN et al (2008) Establishment of Withania somnifera hairy root cultures for the production of withanolide A. J Integr Plant Biol 50:975CrossRefPubMedGoogle Scholar
  153. 153.
    Ohara A et al (2000) Plant regeneration from hairy roots induced by infection with Agrobacterium rhizogenes in Crotalaria juncea L. Plant Cell Rep 19:563CrossRefGoogle Scholar
  154. 154.
    Yoshimatsu K et al (2004) Tropane alkaloid production and shoot regeneration in hairy and adventitious root cultures of Duboisia myoporoides-D. leichhardtii hybrid. Biol Pharm Bull 27:1261CrossRefPubMedGoogle Scholar
  155. 155.
    Celma CR et al (2001) Decreased scopolamine yield in field-grown Duboisia plants regenerated from hairy roots. Planta Med 67:249CrossRefGoogle Scholar
  156. 156.
    Vinterhalter B et al (2006) Shoot and root culture of Hypericum perforatum L. transformed with Agrobacterium rhizogenes A4M70GUS. Biol Plant 50:767CrossRefGoogle Scholar
  157. 157.
    Jia H et al (2008) Agrobacterium rhizogenes-mediated transformation and regeneration of the Apocynum venetum. Chin J Biotechnol 24:1723CrossRefGoogle Scholar
  158. 158.
    Saxena G et al (2007) Rose-scented geranium (Pelargonium sp.) generated by Agrobacterium rhizogenes mediated Ri insertion for improved essential oil quality. Plant Cell Tiss Org Cult 90:215CrossRefGoogle Scholar
  159. 159.
    Satheeshkumar K et al (2009) Isolation of morphovariants through plant regeneration in Agrobacterium rhizogenes induced hairy root cultures of Plumbago rosea L. Indian J Biotechnol 8:435Google Scholar
  160. 160.
    Cho H-J et al (1998) Agrobacterium rhizogenes-mediated transformation and regeneration of the legume Astragalus sinicus (Chinese milk vetch). Plant Sci 138:53CrossRefGoogle Scholar
  161. 161.
    Subroto MA et al (2001) Agrobacterium rhizogenes-mediated transformation of Solanum nigrum L.: spontaneous plant regeneration and endogenous IAA contents. Indonesian. J Agric Sci 1:53Google Scholar
  162. 162.
    Kumar GBS et al (2006) Expression of hepatitis B surface antigen on potato hairy roots. Plant Sci 170:918CrossRefGoogle Scholar
  163. 163.
    Wang YM et al (2001) Regeneration of plants from callus tissues of hairy roots induced by Agrobacterium rhizogenes on Alhagi pseudoalhagi. Cell Res 11:279CrossRefPubMedGoogle Scholar
  164. 164.
    Perez-Molphe-Bulch E, Ochoa-Alejo N (1998) Regeneration of transgenic plants of Mexican lime from Agrobacterium rhizogenes-transformed tissues. Plant Cell Rep 17:591CrossRefGoogle Scholar
  165. 165.
    Li BH et al (2000) Genetic transformation of autotetraploid Isatis indigotica fort. induced by Ri T-DNA and plant regeneration. China J Chinese Materia Medica 25:657–660Google Scholar
  166. 166.
    Inoue F et al (2003) Plant regeneration of peppermint, Mentha piperita, from the hairy roots generated from microsegment infected with Agrobacterium rhizogenes. Plant Biotechnol 20:169CrossRefGoogle Scholar
  167. 167.
    Fu CX et al (2004) Establishment of Saussurea involucrata hairy roots culture and plantlet regeneration. Chin J Biotechnol 20:366Google Scholar
  168. 168.
    Bu HY et al (2001) Agrobacterium rhizogenes-mediated transformation and the regeneration of transformants in Alhagi pseudalhagi. Bull Exp Biol 34:81Google Scholar
  169. 169.
    Moghaieb RE et al (2004) Shoot regeneration from GUS-transformed tomato (Lycopersicon esculentum) hairy root. Cell Mol Biol Lett 9:439PubMedGoogle Scholar
  170. 170.
    Chaudhuri KN et al (2006) Spontaneous plant regeneration in transformed roots and calli from Tylophora indica: changes in morphological phenotype and tylophorine accumulation associated with transformation. Plant Cell Rep 25:1059CrossRefPubMedGoogle Scholar
  171. 171.
    Kang HJ et al (2006) Production of transgenic Aralia elata regenerated from Agrobacterium rhizogenes-mediated transformed roots. Plant Cell Tiss Org Cult 85:187CrossRefGoogle Scholar
  172. 172.
    Cho H-J, Widholm JM (2002) Improved shoot regeneration protocol for hairy roots of the legume Astragalus sinicus. Plant Cell Tiss Org Cult 69:259CrossRefGoogle Scholar
  173. 173.
    Kumar V et al (2006) Stable transformation and direct regeneration in Coffea canephora P ex. Fr. by Agrobacterium rhizogenes mediated transformation without hairy-root phenotype. Plant Cell Rep 25:214CrossRefPubMedGoogle Scholar
  174. 174.
    Cardarelli M et al (1987) Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype. Mol Gen Genet 209:475CrossRefPubMedGoogle Scholar
  175. 175.
    Leljak-Levani D et al (2004) Somatic embryogenesis in pumpkin (Cucurbita pepo L.): control of somatic embryo development by nitrogen compounds. J Plant Physiol 161:229CrossRefGoogle Scholar
  176. 176.
    Xu ZQ et al (2000) Transformation of sainfoin by Agrobacterium rhizogenes LBA9402 Bin19 and regeneration of transgenic plants. Shi Yan Sheng Wu Xue Bao 33:63PubMedGoogle Scholar
  177. 177.
    Zhou YQ et al (2007) Hairy root induction and plant regeneration of Rehmannia glutinosa Libosch. f. hueichingensis (Chao et Schih) Hsiao transformed by Agrobacterium rhizogenes. J Mol Cell Biol 40:223Google Scholar
  178. 178.
    Christey MC (2001) Use of Ri-mediated transformation for production of transgenic plants. In Vitro Cell Dev Biol Plant 37:687CrossRefGoogle Scholar
  179. 179.
    Hu ZB, Du M (2006) Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48:121CrossRefGoogle Scholar
  180. 180.
    Giri A, Narasu ML (2000) Transgenic hairy roots. Recent trends and applications. Biotechnol Adv 18:1CrossRefPubMedGoogle Scholar
  181. 181.
    Mishiba K-I et al (2006) Production of dwarf potted gentian using wild-type Agrobacterium rhizogenes. Plant Biotechnol 23:33CrossRefGoogle Scholar
  182. 182.
    Nakatsuka T et al (2011) Production of picotee-type flowers in Japanese gentian by CRES-T. Plant Biotechnol 28:173CrossRefGoogle Scholar
  183. 183.
    Lakshmanan P et al (2006) Developmental and hormonal regulation of direct shoot organogenesis and somatic embryogenesis in sugarcane (Saccharum spp. Interspecific hybrids) leaf culture. Plant Cell Rep 25:1007CrossRefPubMedGoogle Scholar
  184. 184.
    Piatczak E et al (2006) Genetic transformation of Centaurium erythraea Rafn by Agrobacterium rhizogenes and the production of secoiridoids. Plant Cell Rep 25:1308CrossRefPubMedGoogle Scholar
  185. 185.
    Emons AMC, Kieft H (1995) Somatic embryogenesis in Maize (Zea mays L). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry 31 – somatic embryogenesis and synthetic seed II. Springer, Berlin, pp 24–39CrossRefGoogle Scholar
  186. 186.
    Deng W et al (2009) A novel method for induction of plant regeneration via somatic embryogenesis. Plant Sci 177:43CrossRefGoogle Scholar
  187. 187.
    Trémouillaux-Guiller J, Chénieux JC (1995) Somatic embryogenesis from leaf protoplasts of Rauvolfia vomitoria Afz. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry 31 – somatic embryogenesis and synthetic seed II. Springer, Berlin, pp 357–370CrossRefGoogle Scholar
  188. 188.
    Gorden-Kamm WJ et al (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2:603Google Scholar
  189. 189.
    Yang DC, Choi YE (2000) Production of transgenic plants via Agrobacterium rhizogenes-mediated transformation of Panax ginseng. Plant Cell Rep 19:491CrossRefGoogle Scholar
  190. 190.
    David C et al (1988) T-DNA length variability in mannopine hairy root: more than 50 kilobasepairs of pRi T-DNA can integrate in plant cells. Plant Cell Rep 7:92CrossRefGoogle Scholar
  191. 191.
    Fründt C et al (1998) A tobacco homologue of the Ri-plasmid orf13 gene causes cell proliferation in carrot root discs. Mol Gen Genet 259:559CrossRefPubMedGoogle Scholar
  192. 192.
    Chaudhuri KN et al (2009) Transgeneic mimicry of pathogen attach stimulates growth and secondary metabolite accumulation. Transgenic Res 18:121CrossRefPubMedGoogle Scholar
  193. 193.
    Collier R et al (2005) Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J 43:449CrossRefPubMedGoogle Scholar
  194. 194.
    Franche C, Duhoux E (2001) Du transfert d’ADN à l’obtention d’une plante transgénique. In: Elsevier, (eds) La transgenèse végétale. Bio campus, Amsterdam, New York, Oxford, pp 95–106Google Scholar
  195. 195.
    Bottino PJ et al (1989) Agrobacterium-mediated DNA transfer. J Tiss Cult Methods 12:135CrossRefGoogle Scholar
  196. 196.
    Casanova E et al (2005) Influence of rol genes in floriculture. Biotechnol Adv 23:3CrossRefPubMedGoogle Scholar
  197. 197.
    Pellegrineschi A et al (1994) Improvement of ornamental characters and fragrance production in Lemon-Scented geranium through genetic transformation by Agrobacterium rhizogenes. Biotechnology 12:64CrossRefGoogle Scholar
  198. 198.
    Caboni E et al (1996) Root induction by Agrobacterium rhizogenes in walnut. Plant Sci 118:203CrossRefGoogle Scholar
  199. 199.
    Das S et al (1996) In vitro propagation of cashew nut. Plant Cell Rep 15:615CrossRefGoogle Scholar
  200. 200.
    Bensaddek L et al (2008) Induction and growth of hairy roots for the production of medicinal compounds. J Integr Biosci 3:2Google Scholar
  201. 201.
    Ghosh S, Jha S (2008) Colchicine – an overview for plant biotechnologists. In: Ramawat KG, Mérillon JM (eds) Bioactive molecules and medicinal plants. Springer, Berlin, Heidelberg, pp 215–232CrossRefGoogle Scholar
  202. 202.
    Poulev A et al (2003) Elicitation, a new window into plant chemodiversity and phytochemical drug discovery. J Med Chem 46:2542CrossRefPubMedGoogle Scholar
  203. 203.
    Zàrate R, Verpoorte R (2007) Strategies for the genetic modification of the medicinal plants Catharanthus roseus (L.) G. Don. Phytochem Rev 6:475CrossRefGoogle Scholar
  204. 204.
    Guo B et al (2007) In vitro propagation of an endangered medicinal plant Saussurea involucrata Kar. et Kir. Plant Cell Rep 26:261CrossRefPubMedGoogle Scholar
  205. 205.
    Medina-Bolivar F, Flores HE (1995) Selection for hyoscyamine and cinnamoyl putrescine overproduction in cell cultures of Hyoscyamus muticus. Plant Physiol 108:1553PubMedGoogle Scholar
  206. 206.
    Verpoorte R et al (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13CrossRefGoogle Scholar
  207. 207.
    Laurain D et al (1997) Production of ginkgolide and bilobalide in transformed and gametophyte derived cell cultures of Ginkgo biloba. Phytochemistry 46:127CrossRefGoogle Scholar
  208. 208.
    Tabata M, Hiraoka N (1976) Variation of alkaloid production in Nicotiana rustica callus cultures. Physiol Plant 38:19CrossRefGoogle Scholar
  209. 209.
    Trémouillaux-Guiller J et al (1987) Variability in tissue cultures of Choisya ternata. Alkaloid accumulation in protoclones and aggregate clones obtained from established strains. Plant Cell Rep 6:375CrossRefGoogle Scholar
  210. 210.
    Trémouillaux-Guiller J et al (1988) Variability in tissue cultures of Choisya ternata. III Comparing alkaloid production in cell lines obtained by various strategies. Plant Cell Rep 7:456Google Scholar
  211. 211.
    Efferth T et al (2007) Molecular target-guided tumor therapy with natural products derived from traditional Chinese medicine. Curr Med Chem 14:2024CrossRefPubMedGoogle Scholar
  212. 212.
    Ono N, Tian L (2011) The multiplicity of hairy root cultures: prolific possibilities. Plant Sci 180:439CrossRefPubMedGoogle Scholar
  213. 213.
    Christen P et al (1992) Characteristics of growth and tropane alkaloid production in Hyoscyamus albus hairy roots transformed with Agrobacterium rhizogenes A4. Plant Cell Rep 11:597CrossRefGoogle Scholar
  214. 214.
    Flores HE et al (1999) ‘Radicle’ biochemistry: the biology of root-specific metabolism. Trends Plant Sci 4:220CrossRefPubMedGoogle Scholar
  215. 215.
    Shanks JV, Morgan J (1999) Plant ‘hairy root’ culture. Curr Opin Biotechnol 10:151CrossRefPubMedGoogle Scholar
  216. 216.
    Caspeta L et al (2005) Solanum chrysotrichum hairy root cultures: characterization, scale-up and production of five antifungal saponins for human use. Planta Med 71:1084CrossRefPubMedGoogle Scholar
  217. 217.
    Christen P et al (1989) High-yield production of tropane alkaloids by hairy root cultures of a Datura candida hybrid. Plant Cell Rep 8:75CrossRefGoogle Scholar
  218. 218.
    Gränicher F et al (1992) High-yield production of valepotriates by hairy root cultures of Valeriana officinalis L. var. sambucifolia Mikan. Plant Cell Rep 11:339CrossRefGoogle Scholar
  219. 219.
    Yoshimatsu K, Shimomura K (1992) Transformation of opium poppy (Papaver somniferum L.) with Agrobacterium rhizogenes MAFF 03-0111724. Plant Cell Rep 11:132CrossRefGoogle Scholar
  220. 220.
    Ahn JC et al (1996) Polyacetylenes in hairy roots of Platycodon grandiflorum. Phytochemistry 42:69CrossRefGoogle Scholar
  221. 221.
    Oksman-Caldentey KM et al (1994) Effect of nitrogen and sucrose on the primary and secondary metabolism of transformed root cultures of Hyoscyamus muticus. Plant Cell Tiss Org Cult 38:263CrossRefGoogle Scholar
  222. 222.
    Brillanceau MH et al (1989) Genetic transformation of Catharanthus roseus G. Don by Agrobacterium rhizogenes. Plant Cell Rep 8:63CrossRefGoogle Scholar
  223. 223.
    Gantet P et al (1998) Necessity of a functional octadecanoic pathway for indole alkaloid synthesis by Catharanthus roseus cell suspensions cultured in an auxin-starved medium. Plant Cell Physiol 39:220CrossRefGoogle Scholar
  224. 224.
    Gontier E et al (2002) Hydroponic combined with natural or forced root permeabilization: a promising technique for plant secondary metabolite production. Plant Sci 163:723CrossRefGoogle Scholar
  225. 225.
    Guillon S et al (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9:341CrossRefPubMedGoogle Scholar
  226. 226.
    Peebles CAM et al (2009) The role of the octadecanoid pathway in the production of terpenoid indole alkaloids in Catharanthus roseus hairy roots under normal and UV-B stress conditions. Biotechnol Bioeng 103:1248CrossRefPubMedGoogle Scholar
  227. 227.
    Medina-Bolivar F et al (2007) Production and secretion of resveratrol in hairy root cultures of peanut. Phytochemistry 68:1992CrossRefPubMedGoogle Scholar
  228. 228.
    Waffo-Teguo P et al (2008) Grapevine stilbenes and their biological effects. In: Ramawat KG, Mérillon JM (eds) Bioactive molecules and medicinal plants. Springer, Berlin, Heidelberg, pp 26–54Google Scholar
  229. 229.
    Verpoorte R et al (1999) Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnol Lett 21:467CrossRefGoogle Scholar
  230. 230.
    Luczkiewicz M, Kokotkiewicz A (2005) Co-cultures of shoots and hairy roots of Genista tinctoria L. for synthesis and biotransformation of large amounts of phytoestrogens. Plant Sci 169:862CrossRefGoogle Scholar
  231. 231.
    Murata J, De Luca V (2005) Localization of tabersonine 16-hydroxylase and 16-OH tabersonine-16-O-methyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus. Plant J 44:581CrossRefPubMedGoogle Scholar
  232. 232.
    Guillon S et al (2008) Hairy roots of Catharanthus roseus: efficient routes to monomeric indole alkaloid production. In: Ramawat KG, Mérillon JM (eds) Bioactive Molecules and Medicinal Plants. Springer, Berlin, Heidelberg, pp 271–283CrossRefGoogle Scholar
  233. 233.
    Watase I et al (2004) Regeneration of transformed Ophiorrhiza pumila plants producing camptothecin. Plant Biotechnol 21:337CrossRefGoogle Scholar
  234. 234.
    Pellegrineschi A et al (1994) Improvement of ornamental characters and fragrance production in lemon-scented Geranium through genetic transformation by Agrobacterium rhizogenes. Bio/Technol 12:64CrossRefGoogle Scholar
  235. 235.
    Subroto MA et al (2007) Changes in solasodine accumulation in regenerated plants of Solanum nigrum transformed with Agrobacterium rhizogenes 15834. Biotechnology 6:328–333CrossRefGoogle Scholar
  236. 236.
    Putalun W et al (2003) Anti-solasodine glycoside single-chain Fv antibody stimulates biosynthesis of solasodine glycoside in plants. Plant Cell Rep 22:344CrossRefPubMedGoogle Scholar
  237. 237.
    Palazón J et al (1998) Relation between the amount of rol C gene product and indole alkaloid accumulation in Catharanthus roseus transformed root cultures. J Plant Physiol 153:712CrossRefGoogle Scholar
  238. 238.
    James CA, Strand ES (2009) Phytoremediation of small organic contaminants using transgenic plants. Curr Opin Biotechnol 20:237CrossRefPubMedGoogle Scholar
  239. 239.
    Kotyza J et al (2010) Phytoremediation of pharmaceuticals – preliminary study. Int J Phytoremediation 12:306CrossRefPubMedGoogle Scholar
  240. 240.
    Kagalkar AN et al (2010) Studies on phytoremediation potentiality of Typhonium flagelliforme for the degradation of Brilliant Blue R. Planta 232:271CrossRefPubMedGoogle Scholar
  241. 241.
    Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153CrossRefPubMedGoogle Scholar
  242. 242.
    Van Aken B (2008) Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends Biotechnol 26:225CrossRefPubMedGoogle Scholar
  243. 243.
    Wood TK (2008) Molecular approaches in bioremediation. Curr Opin Biotechnol 19:572CrossRefPubMedGoogle Scholar
  244. 244.
    Gerhardt KE et al (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20CrossRefGoogle Scholar
  245. 245.
    Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:9377CrossRefPubMedGoogle Scholar
  246. 246.
    Eapen S et al (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25:442CrossRefPubMedGoogle Scholar
  247. 247.
    de Lorenzo V (2008) System’s biology approaches to bioremediation. Curr Opin Biotechnol 19:579CrossRefPubMedGoogle Scholar
  248. 248.
    Doty SL et al (2007) Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proc Natl Acad Sci USA 104:16816CrossRefPubMedGoogle Scholar
  249. 249.
    Drake PMW et al (2002) Transgenic plants expressing antibodies: a model for phytoremediation. FASEB J 16:1855CrossRefPubMedGoogle Scholar
  250. 250.
    Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. J Microbiol Mol Biol Rev 67:16CrossRefGoogle Scholar
  251. 251.
    Hughes JB et al (1997) Transformation of TNT by aquatic plants and plant tissue cultures. Environ Sci Technol 31:266CrossRefGoogle Scholar
  252. 252.
    Bhadra R et al (1999) Confirmation of conjugation processes during TNT metabolism by axenic plant roots. Environ Sci Technol 33:446CrossRefGoogle Scholar
  253. 253.
    Kawahigashi H (2009) Transgenic plants for phytoremediation of herbicides. Curr Opin Biotechnol 20:225CrossRefPubMedGoogle Scholar
  254. 254.
    Raskin I et al (2002) Plants and human health in the twenty-first century. Trends Biotechnol 20:522CrossRefPubMedGoogle Scholar
  255. 255.
    Twyman RM et al (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21:570CrossRefPubMedGoogle Scholar
  256. 256.
    Goldstein DA, Thomas JA (2004) Biopharmaceuticals derived from genetically modified plants. QJM 97:705CrossRefPubMedGoogle Scholar
  257. 257.
    Tremblay R et al (2010) Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol Adv 28:214CrossRefPubMedGoogle Scholar
  258. 258.
    Koprowski H (2005) Vaccines and sera through plant biotechnology. Vaccine 23:1757CrossRefPubMedGoogle Scholar
  259. 259.
    Ma JK-C et al (2005) Molecular farming for new drugs and vaccines, current perspectives on the production of pharmaceuticals in transgenic plants. EMBO Rep 6:593CrossRefPubMedGoogle Scholar
  260. 260.
    Ma JK-C et al (2005) Antibody processing and engineering in plants and new strategies for vaccine production. Vaccine 23:1814CrossRefPubMedGoogle Scholar
  261. 261.
    Schillberg S et al (2005) Opportunities for recombinant antigen and antibody expression in transgenic plants – technology assessment. Vaccine 23:1764CrossRefPubMedGoogle Scholar
  262. 262.
    Sijmons PC et al (1990) Production of correctly processed human serum albumin in transgenic plants. Nat Biotechnol 8:217CrossRefGoogle Scholar
  263. 263.
    Twyman RM et al (2009) Plant biotechnology: the importance of being accurate. Trends Biotechnol 27:609CrossRefPubMedGoogle Scholar
  264. 264.
    Karg SR, Kallio PT (2009) The production of biopharmaceuticals in plant systems. Biotechnol Adv 27:879CrossRefPubMedGoogle Scholar
  265. 265.
    Peeters K et al (2001) Production of antibodies and antibody fragments in plants. Vaccine 19:2756CrossRefPubMedGoogle Scholar
  266. 266.
    Boothe J et al (2010) Seed-based expression systems for plant molecular farming. Plant Biotechnol J 8:588CrossRefPubMedGoogle Scholar
  267. 267.
    Giddings G et al (2000) Transgenic plants as factories for biopharmaceuticals. Nat Biotechnol 18:1151CrossRefPubMedGoogle Scholar
  268. 268.
    Ramessar K et al (2008) Maize plants: an ideal production platform for effective and safe molecular pharming. Plant Sci 174:409CrossRefGoogle Scholar
  269. 269.
    Franken E et al (1997) Recombinant proteins from transgenic plants. Curr Opin Biotechnol 8:411CrossRefPubMedGoogle Scholar
  270. 270.
    Ko K, Koprowski H (2005) Plant biopharming of monoclonal antibodies. Virus Res 111:93–100CrossRefPubMedGoogle Scholar
  271. 271.
    Daniell H et al (2009) Plant-made vaccine antigens and biopharmaceuticals. Trends Plant Sci 14:669CrossRefPubMedGoogle Scholar
  272. 272.
    Hiatt A et al (1989) Production of antibodies in transgenic plants. Nature 342:76CrossRefPubMedGoogle Scholar
  273. 273.
    Bakker H et al (2001) Galactose-extended glycans of antibodies produced by transgenic plants. Proc Natl Acad Sci USA 98:2899CrossRefPubMedGoogle Scholar
  274. 274.
    Gaume A et al (2003) Rhizosecretion of recombinant proteins from plant hairy roots. Plant Cell Rep 21:1188CrossRefPubMedGoogle Scholar
  275. 275.
    Shchelkunov SN, Shchelkunova GA (2010) Plant-based vaccines against human hepatitis B virus. Expert Rev Vaccines 9(8):947CrossRefPubMedGoogle Scholar
  276. 276.
    Thanavala Y, Lugade AA (2010) Oral transgenic plant-based vaccine for hepatitis B. Immunol Res 46:4CrossRefPubMedGoogle Scholar
  277. 277.
    Galeffi P et al (2005) Expression of single-chain antibodies in transgenic plants. Vaccine 23:1823CrossRefPubMedGoogle Scholar
  278. 278.
    Fischer R et al (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7:152CrossRefPubMedGoogle Scholar
  279. 279.
    Farinas CS et al (2007) Recombinant human proinsulin from transgenic corn endosperm: solvent screening and extraction studies. Brazilian J Chem Eng 24:315CrossRefGoogle Scholar
  280. 280.
    Ko K et al (2003) Function and glycosylation of plant-derived antiviral monoclonal antibody. Proc Natl Acad Sci USA 100:8013CrossRefPubMedGoogle Scholar
  281. 281.
    Martinez C et al (2005) Expression of the antibody 14D9 in Nicotiana tabacum hairy roots. J Biotechnol 8:170Google Scholar
  282. 282.
    Benchabane M et al (2008) Preventing unintended proteolysis in plant protein biofactories. Plant Biotechnol J 6:633CrossRefPubMedGoogle Scholar
  283. 283.
    Streatfield SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5:2CrossRefPubMedGoogle Scholar
  284. 284.
    De Muynck B et al (2009) Different subcellular localization and glycosylation for a functional antibody expressed in Nicotiana tabacum plants and cell suspensions. Transgenic Res 18:467CrossRefPubMedGoogle Scholar
  285. 285.
    Faye L et al (2005) Protein modifications in the plant secretory pathway: current status and practical implications in molecular pharming. Vaccine 23:1770CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Abdullah B. Makhzoum
    • 1
  • Pooja Sharma
    • 1
  • Mark A. Bernards
    • 1
  • Jocelyne Trémouillaux-Guiller
    • 2
  1. 1.Department of Biology and the BiotronThe University of Western OntarioLondonCanada
  2. 2.Université F. RabelaisTours Cedex 1France

Personalised recommendations