Skip to main content

The Role of Prenylcysteine Methylation and Metabolism in Abscisic Acid Signaling in Arabidopsis thaliana

  • Chapter
  • First Online:
Isoprenoid Synthesis in Plants and Microorganisms
  • 2503 Accesses

Abstract

Protein prenylation is a posttranslational modification resulting in thioether linkage of a 15-carbon farnesyl, or 20-carbon geranylgeranyl, moiety to a cysteine residue at or near the carboxyl terminus of a protein. Most prenylated proteins are further modified by carboxyl terminal proteolysis and/or methylation, the latter being the only reversible step in this series of modifications. In Arabidopsis thaliana, protein prenylation has been shown to be necessary for negative regulation of abscisic acid (ABA) signaling. This chapter summarizes recent literature on the role of methylation and demethylation of prenylated proteins in negative regulation of ABA signaling. Degradation of prenylated proteins generates farnesylcysteine (FC) and geranylgeranylcysteine (GGC), which are potent competitive inhibitors of isoprenylcysteine methyltransferase (ICMT), the enzyme that methylates the carboxyl terminus of prenylated proteins. Thus, FC and GGC metabolism also affects ABA signaling, and this chapter summarizes recent literature on prenylcysteine metabolism and its role in negative regulation of ABA signaling.

Passed away on June 30, 2012.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews M, Huizinga DH, Crowell DN (2010) The CaaX specificities of Arabidopsis protein prenyltransferases explain era1 and ggb phenotypes. BMC Plant Biol 10:118

    Article  PubMed  Google Scholar 

  • Bhandari J, Fitzpatrick AH, Crowell DN (2010) Identification of a novel abscisic acid-regulated farnesol dehydrogenase from Arabidopsis. Plant Physiol 154:1116–1127

    Article  PubMed  CAS  Google Scholar 

  • Bonetta D, Bayliss P, Sun S, Sage T, McCourt P (2000) Farnesylation is involved in meristem organization in Arabidopsis. Planta 211:182–190

    Article  PubMed  CAS  Google Scholar 

  • Boyartchuk VL, Ashby MN, Rine J (1997) Modulation of Ras and a-factor function by carboxyl-terminal proteolysis. Science 275:1796–1800

    Article  PubMed  CAS  Google Scholar 

  • Bracha K, Lavy M, Yalovsky S (2002) The Arabidopsis AtSTE24 is a CAAX protease with broad substrate specificity. J Biol Chem 277:29856–29864

    Article  PubMed  CAS  Google Scholar 

  • Cadiñanos J, Varela I, Mandel DA, Schmidt WK, Díaz-Perales A, López-Otín C, Freije JM (2003) AtFACE-2, a functional prenylated protein protease from Arabidopsis thaliana related to mammalian Ras-converting enzymes. J Biol Chem 278:42091–42097

    Article  PubMed  Google Scholar 

  • Clarke S (1992) Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu Rev Biochem 61:355–386

    Article  PubMed  CAS  Google Scholar 

  • Clarke S, Vogel JP, Deschenes RJ, Stock J (1988) Posttranslational modification of the Ha-ras oncogene protein: evidence for a third class of protein carboxyl methyltransferases. Proc Natl Acad Sci USA 85:4643–4647

    Article  PubMed  CAS  Google Scholar 

  • Crowell DN (2000) Functional implications of protein isoprenylation in plants. Prog Lipid Res 39:393–408

    Article  PubMed  CAS  Google Scholar 

  • Crowell DN, Huizinga DH (2009) Protein isoprenylation: the fat of the matter. Trends Plant Sci 14:163–170

    Article  PubMed  CAS  Google Scholar 

  • Crowell DN, Kennedy M (2001) Identification and functional expression in yeast of a prenylcysteine α-carboxyl methyltransferase gene from Arabidopsis thaliana. Plant Mol Biol 45:469–476

    Article  PubMed  CAS  Google Scholar 

  • Crowell DN, Randall SK, Sen SE (1998) Prenycysteine α-carboxyl methyltransferase in suspension-cultured tobacco cells. Plant Physiol 118:115–123

    Article  PubMed  CAS  Google Scholar 

  • Crowell DN, Huizinga DH, Deem AK, Trobaugh C, Denton R, Sen SE (2007) Arabidopsis thaliana plants possess a specific farnesylcysteine lyase that is involved in detoxification and recycling of farnesylcysteine. Plant J 50:839–847

    Article  PubMed  CAS  Google Scholar 

  • Cutler S, Ghassemian M, Bonetta D, Cooney S, McCourt P (1996) A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273:1239–1241

    Article  PubMed  CAS  Google Scholar 

  • Deem AK, Bultema RL, Crowell DN (2006) Prenylcysteine methylesterase in Arabidopsis thaliana. Gene 380: 159–166

    Article  PubMed  CAS  Google Scholar 

  • Digits JA, Pyun HJ, Coates RM, Casey PJ (2002) Stereospecificity and kinetic mechanism of human prenylcysteine lyase, an unusual thioether oxidase. J Biol Chem 277:41086–41093

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick AH, Bhandari J, Crowell DN (2011) Farnesol kinase is involved in farnesol metabolism, ABA signaling and flower development in Arabidopsis. Plant J 66:1078–1088

    Article  PubMed  CAS  Google Scholar 

  • Fujiyama A, Tsunasawa S, Tamanoi F, Sakiyama F (1991) S-farnesylation and methyl esterification of C-terminal domain of yeast RAS2 protein prior to fatty acid acylation. J Biol Chem 266:17926–17931

    PubMed  CAS  Google Scholar 

  • Fukada Y (1995) Prenylation and carboxylmethylation of G-protein γ subunit. Methods Enzymol 250:91–105

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez L, Magee AI, Marshall CJ, Hancock JF (1989) Post-translational processing of p21ras is two-step and involves carboxyl-methylation and carboxy-terminal proteolysis. EMBO J 8:1093–1098

    PubMed  CAS  Google Scholar 

  • Hrycyna CA, Clarke S (1990) Farnesyl cysteine C-terminal methyltransferase activity is dependent upon the STE14 gene product in Saccharomyces cerevisiae. Mol Cell Biol 10:5071–5076

    PubMed  CAS  Google Scholar 

  • Hrycyna CA, Clarke S (1992) Maturation of isoprenylated proteins in Saccharomyces cerevisiae. Multiple activities catalyze the cleavage of the three carboxyl-terminal amino acids from farnesylated substrates in vitro. J Biol Chem 267:10457–10464

    PubMed  CAS  Google Scholar 

  • Hrycyna CA, Sapperstein SK, Clarke S, Michaelis S (1991) The Saccharomyces cerevisiae STE14 gene encodes a methyltransferase that mediates C-terminal methylation of a-factor and RAS proteins. EMBO J 10:1699–1709

    PubMed  CAS  Google Scholar 

  • Huizinga DH, Omosegbon O, Omery B, Crowell DN (2008) Isoprenylcysteine methylation and demethylation regulate abscisic acid signaling in Arabidopsis. Plant Cell 20:2714–2728

    Article  PubMed  CAS  Google Scholar 

  • Huizinga DH, Denton R, Koehler KG, Tomasello A, Wood L, Sen SE, Crowell DN (2010) Farnesylcysteine lyase is involved in negative regulation of abscisic acid signaling in Arabidopsis. Mol Plant 3:143–155

    Article  PubMed  CAS  Google Scholar 

  • Johnson CD, Chary SN, Chernoff EA, Zeng Q, Running MP, Crowell DN (2005) Protein geranylgeranyltransferase I is involved in specific aspects of abscisic acid and auxin signaling in Arabidopsis. Plant Physiol 139:722–733

    Article  PubMed  CAS  Google Scholar 

  • Kawata M, Farnsworth CC, Yoshida Y, Gelb MH, Glomset JA, Takai Y (1990) Posttranslationally processed structure of the human platelet protein smg p21B: evidence for geranylgeranylation and carboxyl methylation of the C-terminal cysteine. Proc Natl Acad Sci USA 87:8960–8964

    Article  PubMed  CAS  Google Scholar 

  • Leung KF, Baron R, Seabra MC (2006) Thematic review series: lipid posttranslational modifications. geranylgeranylation of Rab GTPases. J Lipid Res 47:467–475

    Article  PubMed  CAS  Google Scholar 

  • Leung KF, Baron R, Ali BR, Magee AI, Seabra MC (2007) Rab GTPases containing a CAAX motif are processed post-geranylgeranylation by proteolysis and methylation. J Biol Chem 282:1487–1497

    Article  PubMed  CAS  Google Scholar 

  • Narasimha Chary S, Bultema RL, Packard CE, Crowell DN (2002) Prenylcysteine alpha-carboxyl methyltransferase expression and function in Arabidopsis thaliana. Plant J 32:735–747

    Article  PubMed  CAS  Google Scholar 

  • Ong OC, Ota IM, Clarke S, Fung BK (1989) The membrane binding domain of rod cGMP phosphodiesterase is posttranslationally modified by methyl esterification at a C-terminal cysteine. Proc Natl Acad Sci USA 86:9238–9242

    Article  PubMed  CAS  Google Scholar 

  • Pei ZM, Ghassemian M, Kwak CM, McCourt P, Schroeder JI (1998) Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science 282:287–290

    Article  PubMed  CAS  Google Scholar 

  • Reid TS, Terry KL, Casey PJ, Beese LS (2004) Crystallographic analysis of CaaX prenyltransferases complexed with substrates defines rules of protein substrate selectivity. J Mol Biol 343:417–433

    Article  PubMed  CAS  Google Scholar 

  • Running MP, Fletcher JC, Meyerowitz EM (1998) The WIGGUM gene is required for proper regulation of floral meristem size in Arabidopsis. Development 125:2545–2553

    PubMed  CAS  Google Scholar 

  • Running MP, Lavy M, Sternberg H, Galichet A, Gruissem W, Hake S, Ori N, Yalovsky S (2004) Enlarged meristems and delayed growth in plp mutants result from lack of CaaX prenyltransferases. Proc Natl Acad Sci USA 101:7815–7820

    Article  PubMed  CAS  Google Scholar 

  • Sapperstein S, Berkower C, Michaelis S (1994) Nucleotide sequence of the yeast STE14 gene, which encodes farnesylcysteine carboxyl methyltransferase, and demonstration of its essential role in a-factor export. Mol Cell Biol 14:1438–1449

    PubMed  CAS  Google Scholar 

  • Schmidt WK, Tam A, Fujimura-Kamada K, Michaelis S (1998) Endoplasmic reticulum membrane localization of Rce1p and Ste24p, yeast proteases involved in carboxyl-terminal CAAX protein processing and amino-terminal a-factor cleavage. Proc Natl Acad Sci USA 95:11175–11180

    Article  PubMed  CAS  Google Scholar 

  • Tam A, Nouvet FJ, Fujimura-Kamada K, Slunt H, Sisodia SS, Michaelis S (1998) Dual roles for Ste24p in yeast a-factor maturation: NH2-terminal proteolysis and COOH-terminal CAAX processing. J Cell Biol 142:635–649

    Article  PubMed  CAS  Google Scholar 

  • Tschantz WR, Zhang L, Casey PJ (1999) Cloning, expression, and cellular localization of a human prenylcysteine lyase. J Biol Chem 274:35802–35808

    Article  PubMed  CAS  Google Scholar 

  • Tschantz WR, Digits JA, Pyun HJ, Coates RM, Casey PJ (2001) Lysosomal prenylcysteine lyase is a FAD-dependent thioether oxidase. J Biol Chem 276: 2321–2324

    Article  PubMed  CAS  Google Scholar 

  • Yalovsky S, Kulukian A, Rodríguez-Concepción M, Young CA, Gruissem W (2000) Functional requirement of plant farnesyltransferase during development in Arabidopsis. Plant Cell 12:1267–1278

    PubMed  CAS  Google Scholar 

  • Yamane HK, Farnsworth CC, Xie HY, Howald W, Fung BK, Clarke S, Gelb MH, Glomset JA (1990) Brain G ­protein γ subunits contain an all-trans-geranylgeranylcysteine methyl ester at their carboxyl termini. Proc Natl Acad Sci USA 87:5868–5872

    Article  PubMed  CAS  Google Scholar 

  • Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Tschantz WR, Casey PJ (1997) Isolation and characterization of a prenylcysteine lyase from bovine brain. J Biol Chem 272:23354–23359

    Article  PubMed  CAS  Google Scholar 

  • Ziegelhoffer EC, Medrano LJ, Meyerowitz EM (2000) Cloning of the Arabidopsis WIGGUM gene identifies a role for farnesylation in meristem development. Proc Natl Acad Sci USA 97:7633–7638

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David H. Huizinga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Crowell, D.N., Huizinga, D.H. (2012). The Role of Prenylcysteine Methylation and Metabolism in Abscisic Acid Signaling in Arabidopsis thaliana . In: Bach, T., Rohmer, M. (eds) Isoprenoid Synthesis in Plants and Microorganisms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4063-5_20

Download citation

Publish with us

Policies and ethics