Advertisement

Involvement of Compartmentalization in Monoterpene and Sesquiterpene Biosynthesis in Plants

  • Michael Gutensohn
  • Dinesh A. Nagegowda
  • Natalia Dudareva
Chapter

Abstract

Terpenoids play numerous vital roles in basic plant processes with volatile monoterpenes and sesquiterpenes contributing to plant defense and reproduction. The biosynthesis of terpenoids in plants occurs in different subcellular compartments, which until recently were believed to include the cytosol, plastids, and mitochondria. The plastidic MEP pathway and the cytosolic MVA pathway give rise to IPP and DMAPP, which are subsequently utilized by prenyltransferases to produce prenyl diphosphates. It has been accepted that GPP and monoterpenes are synthesized in plastids, whereas FPP and sesquiterpenes are produced in the cytosol. Here we discuss how compartmentalization contributes to the formation of terpenoid diversity in plants in light of recent reports on new subcellular localizations for some enzymatic steps as well as on bifunctional terpene synthases capable of producing both mono- and sesquiterpenes.

Keywords

Monoterpenes Sesquiterpenes Mevalonic acid pathway Methylerythritol-phosphate pathway Prenyltransferases Terpene synthases Subcellular compartmentalization 

References

  1. Adiwilaga K, Kush A (1996) Cloning and characterization of cDNA encoding farnesyl diphosphate synthase from rubber tree (Hevea brasiliensis). Plant Mol Biol 30:935–946PubMedCrossRefGoogle Scholar
  2. Aharoni A, Giri AP, Deuerlein S et al (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:2866–2884PubMedCrossRefGoogle Scholar
  3. Aharoni A, Giri P, Verstappen FWA et al (2004) Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16:3110–3131PubMedCrossRefGoogle Scholar
  4. Aharoni A, Jongsma MA, Bouwmeester HJ (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci 10:594–602PubMedCrossRefGoogle Scholar
  5. Aharoni A, Jongsma MA, Kim TY et al (2006) Metabolic engineering of terpenoid biosynthesis in plants. Phytochem Rev 5:49–58CrossRefGoogle Scholar
  6. Ahumada I, Cairo A, Hemmerlin A et al (2008) Characterisation of the gene family encoding acetoacetyl-CoA thiolase in Arabidopsis. Funct Plant Biol 35:1100–1111CrossRefGoogle Scholar
  7. Attucci S, Aitken SM, Gulick PJ et al (1995) Farnesyl pyrophosphate synthase from white lupin: molecular cloning, expression, and purification of the expressed protein. Arch Biochem Biophys 321:493–500PubMedCrossRefGoogle Scholar
  8. Bach TJ (1986) Hydroxymethylglutaryl-CoA reductase, a key enzyme in phytosterol synthesis? Lipids 21:82–88PubMedCrossRefGoogle Scholar
  9. Bohlmann J, Crock J, Jetter R et al (1998a) Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-α-bisabolene synthase from grand fir (Abies grandis). Proc Natl Acad Sci USA 95:6756–6761PubMedCrossRefGoogle Scholar
  10. Bohlmann J, Meyer-Gauen G, Croteau R (1998b) Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci USA 95:4126–4133PubMedCrossRefGoogle Scholar
  11. Bohlmann J, Martin D, Oldham NJ et al (2000) Terpenoid secondary metabolism in Arabidopsis thaliana: cDNA cloning, characterization, and functional expression of a myrcene/(E)-β-ocimene synthase. Arch Biochem Biophys 375:261–269PubMedCrossRefGoogle Scholar
  12. Bouvier F, Suire C, d’Harlingue A et al (2000) Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. Plant J 24:241–252PubMedCrossRefGoogle Scholar
  13. Burke CC, Croteau R (2002a) Geranyl diphosphate synthase from Abies grandis: cDNA isolation, functional expression, and characterization. Arch Biochem Biophys 405:130–136PubMedCrossRefGoogle Scholar
  14. Burke CC, Croteau R (2002b) Interaction with the small subunit of geranyl diphosphate synthase modifies the chain length specificity of geranylgeranyl diphosphate synthase to produce geranyl diphosphate. J Biol Chem 277:3141–3149PubMedCrossRefGoogle Scholar
  15. Burke CC, Wildung MR, Croteau R (1999) Geranyl diphosphate synthase: cloning, expression, and characterization of this prenyltransferase as a heterodimer. Proc Natl Acad Sci USA 96:13062–13067PubMedCrossRefGoogle Scholar
  16. Campbell M, Hahn FM, Poulter CD et al (1997) Analysis of the isopentenyl diphosphate isomerase gene family from Arabidopsis thaliana. Plant Mol Biol 36:323–328CrossRefGoogle Scholar
  17. Campos N, Boronat A (1995) Targeting and topology in the membrane of plant 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Cell 7:2163–2174PubMedGoogle Scholar
  18. Cane DE (1999) Sesquiterpene biosynthesis: cyclization mechanisms. In: Cane DD (ed) Comprehensive natural products chemistry, vol 2. Elsevier, AmsterdamGoogle Scholar
  19. Carretero-Paulet L, Ahumada I, Cunillera N et al (2002) Expression and molecular analysis of the Arabidopsis DXR gene encoding 1-deoxy-d-xylulose 5-phosphate reductoisomerase, the first committed enzyme of the 2-C-methyl-d-erythritol 4-phosphate pathway. Plant Physiol 129:1581–1591PubMedCrossRefGoogle Scholar
  20. Carrie C, Murcha MW, Millar AH et al (2007) Nine 3-ketoacyl-CoA thiolases (KATs) and acetoacetyl-CoA thiolases (ACATs) encoded by five genes in Arabidopsis thaliana are targeted either to peroxisomes or cytosol but not to mitochondria. Plant Mol Biol 63:97–108PubMedCrossRefGoogle Scholar
  21. Chappell J (1995) The biochemistry and molecular biology of isoprenoid metabolism. Plant Physiol 107:1–6PubMedGoogle Scholar
  22. Chappell J, Wolf F, Proulx J et al (1995) Is the reaction catalyzed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis in plants? Plant Physiol 109:1337–1343PubMedGoogle Scholar
  23. Chen F, Tholl D, Bohlmann J et al (2011) The family of the terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J 66:212–229PubMedCrossRefGoogle Scholar
  24. Cunillera N, Arró M, Delourme D et al (1996) Arabidopsis thaliana contains two differentially expressed farnesyl-diphosphate synthase genes. J Biol Chem 271:7774–7780PubMedCrossRefGoogle Scholar
  25. Cunillera N, Boronat A, Ferrer A (1997) The Arabidopsis thaliana FPS1 gene generates a novel mRNA that encodes a mitochondrial farnesyl-diphosphate synthase isoform. J Biol Chem 272:15381–15388PubMedCrossRefGoogle Scholar
  26. Cunillera N, Boronat A, Ferrer A (2000) Spatial and temporal patterns of GUS expression directed by 5′ regions of the Arabidopsis thaliana farnesyl diphosphate synthase genes FPS1 and FPS2. Plant Mol Biol 44:747–758PubMedCrossRefGoogle Scholar
  27. Davidovich-Rikanati R, Lewinsohn E, Bar E et al (2008) Overexpression of the lemon basil α-zingiberene synthase gene increases both mono- and sesquiterpene contents in tomato fruit. Plant J 56:228–238PubMedCrossRefGoogle Scholar
  28. Delourme D, Lacroute F, Karst F (1994) Cloning of an Arabidopsis thaliana cDNA coding for farnesyl diphosphate synthase by functional complementation in yeast. Plant Mol Biol 26:1867–1873PubMedCrossRefGoogle Scholar
  29. Denbow CJ, Lång S, Cramer CL (1996) The N-terminal domain of tomato 3-hydroxy-3-methylglutaryl-CoA reductases: sequence, microsomal targeting and glycosylation. J Biol Chem 271:9710–9715PubMedCrossRefGoogle Scholar
  30. Disch A, Hemmerlin A, Bach TJ, Rohmer M (1998) Mevalonate-derived isopentenyl diphosphate is the biosynthetic precursor of ubiquinone prenyl side chain in tobacco BY-2 cells. Biochem J 331:615–621PubMedGoogle Scholar
  31. Dudareva N, Pichersky E (2008) Metabolic engineering of plant volatiles. Curr Opin Biotechnol 19:181–189PubMedCrossRefGoogle Scholar
  32. Dudareva N, Andersson S, Orlova I et al (2005) The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers. Proc Natl Acad Sci USA 102:933–938PubMedCrossRefGoogle Scholar
  33. Dudareva N, Negre F, Nagegowda DA et al (2006) Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci 25:417–440CrossRefGoogle Scholar
  34. Eisenreich W, Schwarz M, Cartayrade A et al (1998) The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem Biol 5:R221–R233PubMedCrossRefGoogle Scholar
  35. Eisenreich W, Bacher A, Arigoni D et al (2004) Biosynthesis of isoprenoids via the non-mevalonate pathway. Cell Mol Life Sci 61:1401–1426PubMedCrossRefGoogle Scholar
  36. Gershenzon J, Kreis W (1999) Biochemistry of terpenoids: monoterpenes, sesquiterpenes, diterpenes, sterols, cardiac glycosides and steroid saponins. In: Wink M (ed) Biochemistry of plant secondary metabolism. Ann Plant Rev 3:222–299, CRC Press, Boca RatonGoogle Scholar
  37. Gomez SK, Cox MM, Bede JC et al (2005) Lepidopteran herbivory and oral factors induce transcripts encoding novel terpene synthases in Medicago truncatula. Arch Insect Biochem Physiol 58:114–127PubMedCrossRefGoogle Scholar
  38. Green S, Friel EN, Matich A et al (2007) Unusual features of a recombinant apple α-farnesene synthase. Phytochemistry 68:176–188PubMedCrossRefGoogle Scholar
  39. Hartmann M-A, Bach TJ (2001) Incorporation of all-trans-farnesol into sterols and ubiquinone in Nicotiana tabacum L. cv bright yellow cell cultures. Tetrahedron Lett 42:655–657CrossRefGoogle Scholar
  40. Hemmerlin A, Hoeffer JF, Meyer O et al (2003a) Cross-talk between the cytosolic mevalonate and the plastidial methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J Biol Chem 278:26666–26676PubMedCrossRefGoogle Scholar
  41. Hemmerlin A, Rivera SB, Erickson HK et al (2003b) Enzymes encoded by the farnesyl diphosphate synthase gene family in the big sagebrush Artemisia tridentata ssp. Spiciformis. J Biol Chem 278:32132–32140PubMedCrossRefGoogle Scholar
  42. Hoeffler JF, Hemmerlin A, Grosdemange-Billiard C et al (2002) Isoprenoid biosynthesis in higher plants and in Escherichia coli: on the branching in the methylerythritol phosphate pathway and the independent biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate. Biochem J 366:573–583PubMedCrossRefGoogle Scholar
  43. Hohn TM, Ohlrogge JB (1991) Expression of a fungal sesquiterpene cyclase gene in transgenic tobacco. Plant Physiol 97:460–462PubMedCrossRefGoogle Scholar
  44. Hsiao YY, Jeng MF, Tsai WC et al (2008) A novel homodimeric geranyl diphosphate synthase from the orchid Phalaenopsis bellina lacking a DD(X)2-4D motif. Plant J 55:719–733PubMedCrossRefGoogle Scholar
  45. Hsieh MH, Goodman HM (2005) The Arabidopsis IspH homolog is involved in the plastid nonmevalonate pathway of isoprenoid biosynthesis. Plant Physiol 138:641–653PubMedCrossRefGoogle Scholar
  46. Hsieh MH, Chang CY, Hsu SJ et al (2008) Chloroplast localization of methylerythritol 4-phosphte pathway enzymes and regulation of mitochondrial genes in ispD and ispE albino mutants in Arabidopsis. Plant Mol Biol 66:663–673PubMedCrossRefGoogle Scholar
  47. Hsieh F-L, Chang T-H, Ko T-P et al (2011) Structure and mechanism of an Arabidopsis medium/long-chain-length prenyl pyrophosphate synthase. Plant Physiol 155:1079–1090PubMedCrossRefGoogle Scholar
  48. Jin H, Nikolau BJ (2007) Genetic, biochemical and physiological studies of acetyl-CoA metabolism via condensation. In: Benning C, Ohlrogge J (eds) Current advances in the biochemistry and cell biology of plant lipids. Aardvark Global Publishing, Salt Lake CityGoogle Scholar
  49. Kappers I, Aharoni A, van Herpen TWJM et al (2005) Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309:2070–2072PubMedCrossRefGoogle Scholar
  50. Köpke D, Schröder R, Fischer HM et al (2008) Does egg deposition by herbivorous pine sawflies affect transcription of sesquiterpene synthases in pine? Planta 228:427–438PubMedCrossRefGoogle Scholar
  51. Kovacs WJ, Olivier LM, Krisans SK (2002) Central role of peroxisomes in isoprenoid biosynthesis. Prog Lipid Res 41:369–391PubMedCrossRefGoogle Scholar
  52. Kovacs WJ, Tape KN, Shackelford JE et al (2007) Localization of the pre-squalene segment of the isoprenoid biosynthetic pathway in mammalian peroxisomes. Histochem Cell Biol 127:273–290PubMedCrossRefGoogle Scholar
  53. Koyama T, Ogura K (1999) Isopentenyl diphosphate isomerase and prenyltransferases. In: Barton D, Nakanishi K (eds) Comprehensive natural products chemistry, vol 2. Elsevier, OxfordGoogle Scholar
  54. Laule O, Fürholz A, Chang HS et al (2003) Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana. Proc Natl Acad Sci USA 100:6866–6871PubMedCrossRefGoogle Scholar
  55. Lee S, Chappell J (2008) Biochemical and genomic characterization of terpene synthases in Magnolia grandiflora. Plant Physiol 147:1017–1033PubMedCrossRefGoogle Scholar
  56. Leivar P, González VM, Castel S et al (2005) Subcellular localization of Arabidopsis 3-hydroxy-3-­methylglutaryl-coenzyme A reductase. Plant Physiol 137:57–69PubMedCrossRefGoogle Scholar
  57. Li CP, Larkins BA (1996) Identification of a maize endosperm-specific cDNA encoding farnesyl pyrophosphate synthetase. Gene 171:193–196PubMedCrossRefGoogle Scholar
  58. Li SM, Hennig S, Heide L (1998) Shikonin: a geranyl diphosphate-derived plant hemiterpenoid formed via the mevalonate pathway. Tetrahedron Lett 39:2721–2724CrossRefGoogle Scholar
  59. Liang PH, Ko TP, Wang AHJ (2002) Structure, mechanism and function of prenyltransferases. Eur J Biochem 269:3339–3354PubMedCrossRefGoogle Scholar
  60. Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65PubMedCrossRefGoogle Scholar
  61. Matsushita Y, Kang WY, Charlwood BV (1996) Cloning and analysis of a cDNA encoding farnesyl diphosphate synthase from Artemisia annua. Gene 172:207–209PubMedCrossRefGoogle Scholar
  62. McCaskill D, Croteau R (1995) Monoterpene and sesquiterpene biosynthesis in glandular trichomes of peppermint (Mentha x piperita) rely exclusively on plastid-derived isopentenyl diphosphate. Planta 197:49–56CrossRefGoogle Scholar
  63. McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026PubMedGoogle Scholar
  64. Merret R, Cirioni J, Bach TJ, Hemmerlin A (2007) A serine involved in actin-dependent subcellular localization of a stress-induced tobacco BY-2 hydroxymethylglutaryl-CoA reductase isoform. FEBS Lett 581:5295–5299PubMedCrossRefGoogle Scholar
  65. Nagegowda DA (2010) Plant volatile terpenoid metabolism: biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett 584:2965–2973PubMedCrossRefGoogle Scholar
  66. Nagegowda DA, Dudareva N (2007) Plant biochemistry and biotechnology of flavor compounds and essential oils. In: Kayser O, Quax W (eds) Medicinal plant biotechnology. From basic research to industrial applications. Wiley-VCH, WeinheimGoogle Scholar
  67. Nagegowda DA, Ramalingam S, Hemmerlin A et al (2005) Brassica juncea HMG-CoA synthase: localization of mRNA and protein. Planta 221:844–856PubMedCrossRefGoogle Scholar
  68. Nagegowda DA, Gutensohn M, Wilkerson CG et al (2008) Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. Plant J 55:224–239PubMedCrossRefGoogle Scholar
  69. Newman JD, Chappell J (1999) Isoprenoid biosynthesis in plants: carbon partitioning within the cytoplasmic pathway. Crit Rev Biochem Mol Biol 34:95–106PubMedCrossRefGoogle Scholar
  70. Nieuwenhuizen NJ, Wang MY, Matich AJ et al (2009) Two terpene synthases are responsible for the major terpenes emitted from the flowers of kiwifruit (Actinidia deliciosa). J Exp Bot 60:3203–3219PubMedCrossRefGoogle Scholar
  71. Ogura K, Koyama T (1998) Enzymatic aspects of isoprenoid chain elongation. Chem Rev 98:1263–1276PubMedCrossRefGoogle Scholar
  72. Ohara K, Ujihara T, Endo T et al (2003) Limonene production in tobacco with Perilla limonene synthase cDNA. J Exp Bot 54:2635–2642PubMedCrossRefGoogle Scholar
  73. Okada K, Kasahara H, Yamaguchi S et al (2008) Genetic evidence for the role of isopentenyl diphosphate isomerases in the mevalonate pathway and plant development in Arabidopsis. Plant Cell Physiol 49:604–616PubMedCrossRefGoogle Scholar
  74. Orlova I, Nagegowda DA, Kish CM et al (2009) The small subunit of snapdragon geranyl diphosphate synthase modifies the chain length specificity of tobacco geranylgeranyl diphosphate synthase in planta. Plant Cell 21:4002–4017PubMedCrossRefGoogle Scholar
  75. Pan Z, Herickhoff L, Backhaus RA (1996) Cloning, characterization, and heterologous expression of cDNAs for farnesyl diphosphate synthase from the guayule rubber plant reveals that this prenyltransferase occurs in rubber particles. Arch Biochem Biophys 332:196–204PubMedCrossRefGoogle Scholar
  76. Pechous SW, Whitaker BD (2004) Cloning and functional expression of an (E, E)-α-farnesene synthase cDNA from peel tissue of apple fruit. Planta 219:84–94PubMedCrossRefGoogle Scholar
  77. Phillips MA, D’Auria JC, Gershenzon J et al (2008a) The Arabidopsis thaliana type I isopentenyl diphosphate isomerases are targeted to multiple subcellular compartments and have overlapping functions in isoprenoid biosynthesis. Plant Cell 20:677–696PubMedCrossRefGoogle Scholar
  78. Phillips MA, León P, Boronat A et al (2008b) The plastidial MEP pathway: unified nomenclature and resources. Trends Plant Sci 13:619–623PubMedCrossRefGoogle Scholar
  79. Poulter CD, Rilling HC (1981) Prenyl transferases and isomerase. In: Porter JW, Spurgeon SL (eds) Biosynthesis of isoprenoid compounds, vol 1. Wiley, New YorkGoogle Scholar
  80. Querol J, Campos N, Imperial S et al (2002) Functional analysis of the Arabidopsis thaliana GCPE protein involved in plastid isoprenoid biosynthesis. FEBS Lett 514:343–346PubMedCrossRefGoogle Scholar
  81. Reumann S, Babujee L, Ma C et al (2007) Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms. Plant Cell 19:3170–3193PubMedCrossRefGoogle Scholar
  82. Reumann S, Quan S, Aung K et al (2009) In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol 150:125–143PubMedCrossRefGoogle Scholar
  83. Rodríguez-Concepción M, Boronat A (2002) Elucidation of the methylerythritol phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Physiol 130:1079–1089PubMedCrossRefGoogle Scholar
  84. Rohdich F, Zepeck F, Adam P et al (2003) The deoxyxylulose phosphate pathway of isoprenoid biosynthesis: studies on the mechanisms of the reactions catalyzed by IspG and IspH protein. Proc Natl Acad Sci USA 100:1586–1591PubMedCrossRefGoogle Scholar
  85. Rohmer M (1999) The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep 16:565–574PubMedCrossRefGoogle Scholar
  86. Sallaud C, Rontein D, Onillon S et al (2009) A novel pathway for sesquiterpene biosynthesis from Z, Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites. Plant Cell 21:301–317PubMedCrossRefGoogle Scholar
  87. Sanmiya K, Ueno O, Matsuoka M et al (1999) Localization of farnesyl diphosphate synthase in chloroplasts. Plant Cell Physiol 40:348–354PubMedCrossRefGoogle Scholar
  88. Sapir-Mir M, Mett A, Belausov E et al (2008) Peroxisomal localization of Arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway is compartmentalized to peroxisomes. Plant Physiol 148:1219–1228PubMedCrossRefGoogle Scholar
  89. Schilmiller AL, Schauvinhold I, Larson M et al (2009) Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc Natl Acad Sci USA 106:10865–10870PubMedCrossRefGoogle Scholar
  90. Schmidt A, Gershenzon J (2008) Cloning and characterization of two different types of geranyl diphosphate synthases from Norway spruce (Picea abies). Phytochemistry 69:49–57PubMedCrossRefGoogle Scholar
  91. Schmidt A, Wächtler B, Temp U et al (2010) A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies. Plant Physiol 152:639–655PubMedCrossRefGoogle Scholar
  92. Schnee C, Köllner TG, Gershenzon J et al (2002) The maize gene terpene synthase 1 encodes a sesquiterpene synthase catalyzing the formation of (E)-β-farnesene, (E)-nerolidol, and (E, E)-farnesol after herbivore damage. Plant Physiol 130:2049–2060PubMedCrossRefGoogle Scholar
  93. Schnee C, Köllner TG, Held M et al (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci USA 103:1129–1134PubMedCrossRefGoogle Scholar
  94. Schuhr CA, Radykewicz T, Sagner S et al (2003) Quantitative assessment of crosstalk between the two isoprenoid biosynthesis pathways in plants by NMR spectroscopy. Phytochem Rev 2:3–16CrossRefGoogle Scholar
  95. Simkin AJ, Guirimand G, Papon N et al (2011) Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. Planta 234:903–914Google Scholar
  96. Soler E, Feron G, Clastre M et al (1992) Evidence for a geranyl diphosphate synthase located within the plastids of Vitis vinifera L. cultivated in vitro. Planta 187:171–175CrossRefGoogle Scholar
  97. Sommer S, Severin K, Camara B et al (1995) Intracellular localization of geranylpyrophosphate synthase from cell cultures of Lithospermum erythrorhizon. Phytochemistry 38:623–627CrossRefGoogle Scholar
  98. Suire C, Bouvier F, Backhaus RA et al (2000) Cellular localization of isoprenoid biosynthetic enzymes in Marchantia polymorpha. Uncovering a new role of oil bodies. Plant Physiol 124:971–978PubMedCrossRefGoogle Scholar
  99. Tholl D (2006) Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. Curr Opin Plant Biol 9:297–304PubMedCrossRefGoogle Scholar
  100. Tholl D, Kish CM, Orlova I et al (2004) Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases. Plant Cell 16:977–992PubMedCrossRefGoogle Scholar
  101. Tholl D, Chen F, Petri J et al (2005) Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J 42:757–771PubMedCrossRefGoogle Scholar
  102. Tissier A, Sallaud C, Rontein D (2013) Tobacco trichomes as a platform for terpenoid biosynthesis engineering. In: Bach TJ, Rohmer M (eds) Isoprenoid synthesis in plants and microorganisms: New concepts and experimental approaches. Springer, New YorkGoogle Scholar
  103. Trapp SC, Croteau RB (2001) Genomic organisation of plant terpene synthases and molecular evolutionary implications. Genetics 158:811–832PubMedGoogle Scholar
  104. Tritsch D, Hemmerlin A, Bach TJ, Rohmer M (2010) Plant isoprenoid biosynthesis via the MEP pathway: in vivo IPP/DMAPP ratio produced by (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase in tobacco BY-2 cell cultures. FEBS Lett 584:129–134PubMedCrossRefGoogle Scholar
  105. Turner G, Gershenzon J, Nielson EE et al (1999) Limonene synthase, the enzyme responsible for monoterpene biosynthesis in peppermint, is localized to leucoplasts of oil gland secretory cells. Plant Physiol 120:879–886PubMedCrossRefGoogle Scholar
  106. van Schie CCN, Ament K, Schmidt A et al (2007a) Geranyl diphosphate synthase is required for biosynthesis of gibberellins. Plant J 52:752–762PubMedCrossRefGoogle Scholar
  107. van Schie CCN, Haring MA, Schuurink RC (2007b) Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Mol Biol 64:251–263PubMedCrossRefGoogle Scholar
  108. Vollack K-U, Bach TJ (1996) Cloning of a cDNA encoding cytosolic acetoacetyl-coenzyme A thiolase from radish by functional expression in Saccharomyces cerevisiae. Plant Physiol 111:1097–1107PubMedCrossRefGoogle Scholar
  109. Vollack K-U, Dittrich B, Ferrer A et al (1994) Two radish genes for 3-hydroxy-3-methylglutaryl-CoA reductase isozymes complement mevalonate auxotrophy in a yeast mutant and yield membrane-bound active enzyme. J Plant Physiol 143:479–487CrossRefGoogle Scholar
  110. Wallaart TE, Bouwmeester HJ, Hille J et al (2001) Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta 212:460–465PubMedCrossRefGoogle Scholar
  111. Wang G, Dixon RA (2009) Heterodimeric geranyl(geranyl)diphosphate synthase from hop (Humulus lupulus) and the evolution of monoterpene biosynthesis. Proc Natl Acad Sci USA 106:9914–9919PubMedCrossRefGoogle Scholar
  112. Williams DC, McGarvey DJ, Katahira EJ et al (1998) Truncation of limonene synthase preprotein provides a fully active ‘pseudomature’ form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. Biochemistry 37:12213–12220PubMedCrossRefGoogle Scholar
  113. Wise ML, Croteau R (1999) Monoterpene biosynthesis. In: Cane DD (ed) Comprehensive natural products chemistry, vol 2. Elsevier, AmsterdamGoogle Scholar
  114. Wu S, Schalk M, Clark A et al (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotech 24:1441–1447CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Michael Gutensohn
    • 1
  • Dinesh A. Nagegowda
    • 2
  • Natalia Dudareva
    • 1
  1. 1.Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteUSA
  2. 2.CSIR - Central Institute of Medicinal and Aromatic PlantsBengaluruIndia

Personalised recommendations