Laser Machining and its Associated Effects

Chapter

Abstract

Laser machining has a wide range of industrial applications. However, laser energy can cause thermal damage to composite materials during the shaping operation following curing. Such damage leads to poor assembly tolerances and reduces long-term performance. In this study, we investigated the laser machining-induced formation of anisotropic heat-affected zones (HAZs) in fiber-reinforced plastics (FRP). The degree of HAZ is estimated by the isotherm of the matrix char temperature. Analysis revealed that both the laser energy per unit length and the fiber orientation-dependent thermal conductivity are key factors in determining the extent of HAZ. An experimental measurement of anisotropic thermal conductivity for composite materials is developed. Heat conduction is greater along fibers than it is across a fiber section, thus laser scanning direction relative to fiber orientation affects the HAZ geometry. The study also investigated the principal-axis and nonprincipal-axis grooving of unidirectional (UD), [0/90], Mat, and MatUD laminates. An analytical model based on a moving point heat source using the Mirror Image Method and immersed heat source to model principal-axis grooving is adopted to correlate HAZ anisotropy with various process parameters. Finite difference method (FDM) with an isotherm conductivity model and eigenvalue method is applied to simulate the HAZ resulting from nonprincipal-axis grooving.

Keywords

Laser Heat-affected zone Anisotropic heat conduction Composite materials 

References

  1. 1.
    Dell’Erba M, Galantucci LM, Miglietta S (1992) An experimental study on laser drilling and cutting of composite materials for the aerospace industry using excimer and CO2 sources. Compos Manuf 3(1):14–19CrossRefGoogle Scholar
  2. 2.
    Modest MF, Abakians H (1986) Heat conduction in a moving semi-infinite solid subjected to pulsed laser irradiation. ASME J Heat Transfer 108:597–601CrossRefGoogle Scholar
  3. 3.
    Schuocker D (1986) Dynamic phenomena in laser cutting and cut quality. J Appl Phys 40:9–14CrossRefGoogle Scholar
  4. 4.
    Schuocker D, Abel W (1983) Material removal mechanism of laser cutting. In: Proceedings of the SPIE, pp 88–95Google Scholar
  5. 5.
    Yilbas BS (1987) Study of affecting parameters in laser hole drilling of sheet metals. Trans ASME 109:282–285Google Scholar
  6. 6.
    Anon., Coherent Inc. (1988) Lasers-operation, equipment, application, and design. McGraw-Hill, New York, pp 19–30Google Scholar
  7. 7.
    Mello MD (1986) Laser cutting of non-metallic composites. In: Proceedings of the SPIE-laser processing: fundamentals, applications, and systems engineering, pp 288–290Google Scholar
  8. 8.
    Luxon JT, Parker DE (1985) Industrial lasers and their applications. Prentice-Hall, Engelwood Cliffs, NY, pp 200–242Google Scholar
  9. 9.
    Sturmer E, Von Allmen M (1978) Influence of laser-supported detonation waves on metal drilling with pulsed CO2 lasers. J Appl Phys 49(11):5648–5654CrossRefGoogle Scholar
  10. 10.
    Sepold G, Rothe R (1983) Laser beam cutting of thick steel. ICALEO, SPIE, pp 156–159Google Scholar
  11. 11.
    Eberhardt G (1983) Survey of high power CO2 industrial laser applications and latest laser developments. In: Kimmitt MF (ed) Proceedings of first international conference on lasers in manufacturing, IFS Publication, Bedford, pp 13–19Google Scholar
  12. 12.
    Lee CS, Goel A, Osada H (1985) Parametric studies of pulsed-laser cutting of thin metal plate. J Appl Phys 58(3):1339–1343CrossRefGoogle Scholar
  13. 13.
    Hamann C, Rosen H (1987) Laser machining of ceramic and silicon. In: SPIE-high power laser and their industrial applications, vol 801, pp 130–137Google Scholar
  14. 14.
    Siekman JG (1979) Analysis of laser drilling and cutting results in Al2O3 and ferrites. AIP Conf Proc 50:225–231Google Scholar
  15. 15.
    Chryssolouris G, Bredt J, Kordas S, Wilson E (1988) Theoretical aspect of a laser machine tool. ASME J Eng Industry 110:65–70CrossRefGoogle Scholar
  16. 16.
    Chryssolouris G, Sheng P, Choi WC (1990) Three dimensional laser machining of composite materials. ASME J Eng Mater Technol 112:387–392CrossRefGoogle Scholar
  17. 17.
    Copley S (1983) Shaping materials with lasers. Laser Mater Process 3:297–336CrossRefGoogle Scholar
  18. 18.
    Henderson JB, Wiecek TE (1987) A mathematical model to predict the thermal response of decomposite expanding polymer composite. J Compos Mater 21:373–393CrossRefGoogle Scholar
  19. 19.
    Tagliaferri V, Diilio A (1989) Thermal damage in laser cutting of (0/90)2s aramid/epoxy laminates. Composites 20(2):115–119CrossRefGoogle Scholar
  20. 20.
    Tagliaferri V, Visconti CI, Diilio A (1987) Machining of fiber reinforced material with laser beam: cut quality evaluation. In: Proceedings of the sixth international conference on composite materials, pp 1.190–1.198Google Scholar
  21. 21.
    Tagliaferri V, Diilio A, Visconti CI (1985) Laser cutting of fiber-reinforced polyester. Composites 16(4):317–325CrossRefGoogle Scholar
  22. 22.
    Chryssolouris G, Sheng P, Anastasia N (1993) Laser grooving of composite materials with the aid of a water jet. ASME J Eng Industry 115:62–72CrossRefGoogle Scholar
  23. 23.
    Lau WS, Lee WB (1990) Pulsed Nd: laser cutting of carbon fiber composite materials. Ann CIRP 39:179–182CrossRefGoogle Scholar
  24. 24.
    Lienhard JH (1981) A heat transfer handbook. Prentice-Hall, Englewood Cliffs, NYGoogle Scholar
  25. 25.
    Hocheng H, Pan CT (1993) HAZ in laser cutting of carbon fiber-reinforced PEEK. In: Proceedings of ASME winter annual meeting, PED, vol 66, pp 153–159Google Scholar
  26. 26.
    Olsen O (1989) Cutting front formation in laser cutting. Ann CIRP 38:215–218CrossRefGoogle Scholar
  27. 27.
    Na SJ, Yang YS (1989) Effect of shielding gas pressure in laser cutting of sheet metals. Trans ASME 111:314–318CrossRefGoogle Scholar
  28. 28.
    Duley WW, Gonsalves JN (1974) CO2 laser cutting of thin metal sheets with gas jet assist. Opt Laser Technol 6(2):78–81CrossRefGoogle Scholar
  29. 29.
    Patel RS, Brewster MQ (1991) Gas-assisted laser-metal drilling: theoretical model. J Thermophys 5(1):32–39CrossRefGoogle Scholar
  30. 30.
    Lee SL (1989) Weighting function scheme and its application on multidimensional conservation equations. Int J Heat Mass Transfer 32(11):2065–2073CrossRefGoogle Scholar
  31. 31.
    Springer GS, Tsai SW (1967) Thermal conductivities of unidirectional materials. J Compos Mater 1:166–173CrossRefGoogle Scholar
  32. 32.
    Rolfes R, Hammerschmidet U (1995) Transverse thermal conductivity of CFRP laminates: a numerical and experimental validation of approximation formulae. Compos Sci Technol 54(1):45–54CrossRefGoogle Scholar
  33. 33.
    Chawla KK (1987) Composite materials science and engineering. Springer-Verlag, New YorkGoogle Scholar
  34. 34.
    Hashin Z (1983) Analysis of composite material—a survey. J Appl Mech 50:481–505MATHCrossRefGoogle Scholar
  35. 35.
    Rayleigh L (1982) On the influence of obstacles arranged in rectangular order upon the properties of a medium. Phil Mag 34:481–489Google Scholar
  36. 36.
    Mukherjee K, Khan PAA (1990) Laser machining of graphite, kevlar and glass-reinforced composites. In: Proceedings of the American society for composite fifth technical conference, East Lansing, Michigan, pp 91–104Google Scholar
  37. 37.
    Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Clarendon, LondonGoogle Scholar
  38. 38.
    Rosenthal D (1946) The theory of moving sources of heat and its applications to metal treatments. Trans ASME 68:849–866Google Scholar
  39. 39.
    Liebelt S (1992) Modeling and simulation of laser grooving and cutting for isotropic materials and fiber reinforced plastics. Diplomarbeit IWF, BerlinGoogle Scholar
  40. 40.
    Hocheng H, Pan CT (1999) The effects of cryogenic surroundings on thermal induced damage in laser grooving of fiber-reinforced plastic. J Mach Sci Technol 3(1):77–90CrossRefGoogle Scholar
  41. 41.
    Pan CT, Hocheng H (2001) Evaluation of anisotropic thermal conductivity for unidirectional FRP in laser machining. Compos Part A 32:1657–1667CrossRefGoogle Scholar
  42. 42.
    Uhlmann E, Spur G, Hocheng H, Liebelt S, Pan CT (1999) The extent of laser-induced thermal damage of fiber Ud and cross-ply composite laminates. Int J Mach Tool Manuf 39(4):639–650CrossRefGoogle Scholar
  43. 43.
    Pan CT, Hocheng H (1998) Prediction of laser-induced thermal damage of fiber mat and fiber matUD-reinforced polymers. J Mater Eng Perform 7(6):751–756CrossRefGoogle Scholar
  44. 44.
    Jie BL, Yu BL (1990) Practical thermal analysis. Textile Industry, TaiwanGoogle Scholar
  45. 45.
    Cowan RD (1969) Pulse method of measuring thermal diffusivity at high temperature. J Appl Phys 34:927–929Google Scholar
  46. 46.
    Parker WJ, Jenkins RJ, Butler CP, Abbott GL (1961) A flash method of determining thermal diffusivity heat capacity, and thermal conductivity. J Appl Phys 32:1679–1684CrossRefGoogle Scholar
  47. 47.
    Heber A (1994) Modell zur rheologischen auslegung faserverstärkter thermoplastischer preßbauteile, Dissertation RWTH, Aachen, GermanyGoogle Scholar
  48. 48.
    Carprino G, Tagliaferri V (1988) Maximum cutting speed in laser cutting of fiber reinforced plastics. Int J Mach Tools Manuf 28(4):389–398CrossRefGoogle Scholar
  49. 49.
    Tyn Myint U (1973) Partial differential equation of mathematical physics. Elsevier North Holland, New YorkGoogle Scholar
  50. 50.
    Pilling MW, Yates B, Black MA, Tattersall P (1979) The thermal conductivity of carbon fiber-reinforced composites. J Mater Sci 14:1326–1338CrossRefGoogle Scholar
  51. 51.
    Spur G, Liebelt St. (1997) Modeling of laser cutting composite and comparison with experiment. In: Fourth international conference of composites engineering (ICCE/4), Big Island, pp 599–600Google Scholar
  52. 52.
    Powell RW (1951) Thermal conductivities of metallic conductors and their estimation. In: Proceedings of general discussion heat transfer, ASME-IME, London, pp 290–295Google Scholar
  53. 53.
    Pan CT, Hocheng H (1998) Prediction of extent of heat affected zone in laser grooving of unidirectional fiber-reinforced plastics. J Eng Mater Technol ASME 120:321–327CrossRefGoogle Scholar
  54. 54.
    Pan CT, Hocheng H (1996) The anisotropic heat affected zone in laser grooving of fiber reinforced composite material. J Mater Process Technol 62:54–60CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Mechanical and Electro-Mechanical EngineeringNational Sun Yat-Sen UniversityKaohsiungTaiwan, ROC
  2. 2.Department of Power Mechanical EngineeringNational Tsing Hua UniversityHsinchuTaiwan, ROC

Personalised recommendations