Enterovirus Infection of Cultured Human Pancreatic Islets

  • Teemu Smura
  • Merja Roivainen


The factors involved in viral tropism for pancreatic islets and islet response to infection can be studied in an experimental model utilizing pancreatic islets isolated from organ donors and cultivated as free-floating preparations. Enteroviruses, in general, have a tropism for human pancreatic islets in vitro. Both lytic and persistent enterovirus infections have been characterized under different experimental conditions and viruses have been detected in both insulin-producing and non-insulin-producing cells. Delayed (secondary) necrosis after initial pyknosis is the major mechanism of cell death during lytic enterovirus infection in cultured human pancreatic islets, whereas apoptosis appears to play only a minor role. Pancreatic beta-cell tropism and the ability to induce beta-cell dysfunction and death probably depends both on the genetic properties of the virus and on the host cell response to the infection. Viral properties are likely to affect the phenomenon since some enterovirus strains are highly cytolytic whereas others show progeny production with no apparent islet destruction in vitro. Even for highly destructive virus strains, there is a significant delay between viral progeny production and pancreatic islet destruction in vitro, suggesting a role for secondary, virus-induced, host factors in the process.


Pancreatic Islet Enterovirus Infection Human Pancreatic Islet Human Enterovirus Host Cell Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by grants from the European Union (EP7-HEALTH-2007, DIAPREPP N202013), the Juvenile Diabetes Research Foundation (USA), The Academy of Finland, and Päivikki and Sakari Sohlberg Foundation.


  1. Agol VI, Belov GA, Bienz K, Egger D, Kolesnikova MS, Romanova LI, Sladkova LV, Tolskaya EA (2000) Competing death programs in poliovirus-infected cells: commitment switch in the middle of the infectious cycle. J Virol 74:5534–5541PubMedCrossRefGoogle Scholar
  2. Al-Hello H, Ylipaasto P, Smura T, Rieder E, Hovi T, Roivainen M (2009) Amino acids of Coxsackie B5 virus are critical for infection of the murine insulinoma cell line, MIN-6. J Med Virol 81:296–304PubMedCrossRefGoogle Scholar
  3. Baranowski E, Ruiz-Jarabo CM, Domingo E (2001) Evolution of cell recognition by viruses. Science 292:1102–1105PubMedCrossRefGoogle Scholar
  4. Berg Anna-Karin , Korsgren O, Frisk G (2006) Induction of the chemokine interferon-gamma-inducible protein-10 in human pancreatic islets during enterovirus infection. Diabetologia 49:2697–2703PubMedCrossRefGoogle Scholar
  5. Caggana M, Chan P, Ramsingh A (1993) Identification of a single amino acid residue in the capsid protein VP1 of coxsackievirus B4 that determines the virulent phenotype. J Virol 67:4797–4803PubMedGoogle Scholar
  6. Chehadeh W, Kerr-Conte J, Pattou F, Alm G, Lefebvre J, Wattre P, Hober D (2000) Persistent infection of human pancreatic islets by coxsackievirus B is associated with alpha interferon synthesis in beta cells. J Virol 74:10153–10164PubMedCrossRefGoogle Scholar
  7. Delaney CA, Pavlovic D, Hoorens A, Pipeleers DG, Eizirik DL (1997) Cytokines induce deoxyribonucleic acid strand breaks and apoptosis in human pancreatic islet cells. Endocrinology 138:2610–2614PubMedCrossRefGoogle Scholar
  8. Domingo E, Martin V, Perales C, Escarmis C (2008) Coxsackieviruses and quasispecies theory: evolution of enteroviruses. Curr Top Microbiol Immunol 323:3–32PubMedCrossRefGoogle Scholar
  9. Dotta F, Censini S, van Halteren AG, Marselli L, Masini M, Dionisi S, Mosca F, Boggi U, Muda AO, Prato SD, Elliott JF, Covacci A, Rappuoli R, Roep BO, Marchetti P (2007) Coxsackie B4 virus infection of beta cells and natural killer cell insulitis in recent-onset type 1 diabetic patients. Proc Natl Acad Sci USA 104:5115–5120PubMedCrossRefGoogle Scholar
  10. Dunn JJ, Chapman NM, Tracy S, Romero JR (2000) Genomic determinants of cardiovirulence in coxsackievirus B3 clinical isolates: localization to the 5′ nontranslated region. J Virol 74:4787–4794PubMedCrossRefGoogle Scholar
  11. Eizirik DL, Colli ML, Ortis F (2009) The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat Rev Endocrinol 5:219–226PubMedCrossRefGoogle Scholar
  12. Elshebani A, Olsson A, Westman J, Tuverno T, Korsgren O, Frisk G (2007) Effects on isolated human pancreatic islet cells after infection with strains of enterovirus isolated at clinical presentation of type 1 diabetes. Virus Res 124:193–203PubMedCrossRefGoogle Scholar
  13. Evans DMA, Dunn G, Minor PD, Schild GC, Cann AJ, Stanway G, Almond JW, Currey K, Maizel JV (1985) Increased neurovirulence associated with a single nucleotide change in a noncoding region of the sabin type-3 poliovaccine genome. Nature 314:548–550PubMedCrossRefGoogle Scholar
  14. Filippi C, von Herrath M (2005) How viral infections affect the autoimmune process leading to type I diabetes. Cell Immunol 233:125–132PubMedCrossRefGoogle Scholar
  15. Flodstrom M, Maday A, Balakrishna D, Cleary MM, Yoshimura A, Sarvetnick N (2002) Target cell defense prevents the development of diabetes after viral infection. Nat Immunol 3:373–382PubMedCrossRefGoogle Scholar
  16. Foulis AK, McGill M, Farquharson MA, Hilton DA (1997) A search for evidence of viral infection in pancreases of newly diagnosed patients with IDDM. Diabetologia 40:53–61PubMedCrossRefGoogle Scholar
  17. Hultcrantz M, Huhn MH, Wolf M, Olsson A, Jacobson S, Williams BR, Korsgren O, Flodstrom-Tullberg M (2007) Interferons induce an antiviral state in human pancreatic islet cells. Virology 367:92–101PubMedCrossRefGoogle Scholar
  18. Ida-Hosonuma M, Iwasaki T, Yoshikawa T, Nagata N, Sato Y, Sata T, Yoneyama M, Fujita T, Taya C, Yonekawa H, Koike S (2005) The alpha/beta interferon response controls tissue tropism and pathogenicity of poliovirus. J Virol 79:4460–4469PubMedCrossRefGoogle Scholar
  19. Kim MS, Racaniello VR (2007) Enterovirus 70 receptor utilization is controlled by capsid residues that also regulate host range and cytopathogenicity. J Virol 81:8648–8655PubMedCrossRefGoogle Scholar
  20. Kim K, Kanno T, Chapman NM, Tracy S (2006) Genetic determinants of virulence in the group B coxsackieviruses. Future Virol 1:597–604CrossRefGoogle Scholar
  21. Knowles NJ, Hovi T, Hyypiä T, King AMQ, Lindberg M, Pallansch MA, Palmenberg AC, Simmonds P, Skern T, Stanway G, Yamashita T, Zell R. (2012). Picornaviridae. In Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses pp. 855–880. Edited by King AMQ, Adams MJ, Carstens EB. & Lefkowitz EJ. San Diego: ElsevierGoogle Scholar
  22. Knowlton KU, Jeon ES, Berkley N, Wessely R, Huber S (1996) A mutation in the puff region of VP2 attenuates the myocarditic phenotype of an infectious cDNA of the Woodruff variant of coxsackievirus B3. J Virol 70:7811–7818PubMedGoogle Scholar
  23. Lehuen A, Diana J, Zaccone P, Cooke A (2010) Immune cell crosstalk in type 1 diabetes. Nat Rev Immunol 10:501–513PubMedCrossRefGoogle Scholar
  24. Lukashev AN (2005) Role of recombination in evolution of enteroviruses. Rev Med Virol 15:157–167PubMedCrossRefGoogle Scholar
  25. Nair S, Leung K, Rawlinson WD, Naing Z, Craig ME (2010) Enterovirus infection induces cytokine and chemokine expression in insulin-producing cells. J Med Virol 82:1950–1957PubMedCrossRefGoogle Scholar
  26. Paananen A, Ylipaasto P, Rieder E, Hovi T, Galama J, Roivainen M (2003) Molecular and biological analysis of echovirus 9 strain isolated from a diabetic child. J Med Virol 69:529–537PubMedCrossRefGoogle Scholar
  27. Paananen A, Savolainen-Kopra C, Kaijalainen S, Vaarala O, Hovi T, Roivainen M (2007) Genetic and phenotypic diversity of echovirus 30 strains and pathogenesis of type 1 diabetes. J Med Virol 79:945–955PubMedCrossRefGoogle Scholar
  28. Pallansch MA, Roos RP (2001) Enteroviruses: polioviruses, coxsackieviruses, echoviruses and newer enteroviruses. Lippincot, Williams and Wilkins, PhiladelphiaGoogle Scholar
  29. Pfeiffer JK, Kirkegaard K (2005) Increased fidelity reduces poliovirus fitness and virulence under selective pressure in mice. PLoS Pathog 1:102–110CrossRefGoogle Scholar
  30. Ramsingh AI, Lee WT, Collins DN, Armstrong LE (1997) Differential recruitment of B and T cells in coxsackievirus B4-induced pancreatitis is influenced by a capsid protein. J Virol 71:8690–8697PubMedGoogle Scholar
  31. Rasilainen S, Ylipaasto P, Roivainen M, Bouwens L, Lapatto R, Hovi T, Otonkoski T (2004a) Mechanisms of beta cell death during restricted and unrestricted enterovirus infection. J Med Virol 72:451–461PubMedCrossRefGoogle Scholar
  32. Rasilainen S, Ylipaasto P, Roivainen M, Lapatto R, Hovi T, Otonkoski T (2004b) Mechanisms of coxsackievirus B5 mediated beta-cell death depend on the multiplicity of infection. J Med Virol 72:586–596PubMedCrossRefGoogle Scholar
  33. Roivainen M, Klingel K (2010) Virus infections and type 1 diabetes risk. Curr Diab Rep 10:350–356PubMedCrossRefGoogle Scholar
  34. Roivainen M, Rasilainen S, Ylipaasto P, Nissinen R, Ustinov J, Bouwens L, Eizirik DL, Hovi T, Otonkoski T (2000) Mechanisms of coxsackievirus-induced damage to human pancreatic beta-cells. J Clin Endocrinol Metab 85:432–440PubMedCrossRefGoogle Scholar
  35. Roivainen M, Ylipaasto P, Savolainen C, Galama J, Hovi T, Otonkoski T (2002) Functional impairment and killing of human beta cells by enteroviruses: the capacity is shared by a wide range of serotypes, but the extent is a characteristic of individual virus strains. Diabetologia 45:693–702PubMedCrossRefGoogle Scholar
  36. Smura T, Ylipaasto P, Klemola P, Kaijalainen S, Kyllonen L, Sordi V, Piemonti L, Roivainen M (2010) Cellular tropism of human enterovirus D species serotypes EV-94, EV-70, and EV-68 in vitro: implications for pathogenesis. J Med Virol 82:1940–1949PubMedCrossRefGoogle Scholar
  37. Smura T, Savolainen-Kopra C, Roivainen M (2011) Evolution of newly described enteroviruses. Future Virol 6:109–131CrossRefGoogle Scholar
  38. Taylor RC, Cullen SP, Martin SJ (2008) Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9:231–241PubMedCrossRefGoogle Scholar
  39. Tolskaya EA, Romanova LI, Kolesnikova MS, Ivannikova TA, Smirnova EA, Raikhlin NT, Agol VI (1995) Apoptosis-inducing and apoptosis-preventing functions of poliovirus. J Virol 69:1181–1189PubMedGoogle Scholar
  40. Tracy S, Drescher KM, Jackson JD, Kim K, Kono K (2010) Enteroviruses, type 1 diabetes and hygiene: a complex relationship. Rev Med Virol 20:106–116PubMedCrossRefGoogle Scholar
  41. Vignuzzi M, Stone JK, Arnold JJ, Cameron CE, Andino R (2006) Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439:344–348PubMedCrossRefGoogle Scholar
  42. Virag L, Szabo C (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54:375–429PubMedCrossRefGoogle Scholar
  43. Vreugdenhil GR, Schloot NC, Hoorens A, Rongen C, Pipeleers DG, Melchers WJG, Roep BO, Galama JMD (2000) Acute onset of type I diabetes mellitus after severe echovirus 9 infection: putative pathogenic pathways. Clin Infect Dis 31:1025–1031PubMedCrossRefGoogle Scholar
  44. Vuorinen T, Nikolakaros G, Simell O, Hyypia T, Vainionpaa R (1992) Mumps and coxsackie-B3 virus-infection of human fetal pancreatic islet-like cell clusters. Pancreas 7:460–464PubMedCrossRefGoogle Scholar
  45. Whitton JL, Cornell CT, Feuer R (2005) Host and virus determinants of picornavirus pathogenesis and tropism. Nat Rev Microbiol 3:765–776PubMedCrossRefGoogle Scholar
  46. Yin H, Berg AK, Westman J, Hellerstrom C, Frisk G (2002) Complete nucleotide sequence of a coxsackievirus B-4 strain capable of establishing persistent infection in human pancreatic islet cells: effects on insulin release, proinsulin synthesis, and cell morphology. J Med Virol 68:544–557PubMedCrossRefGoogle Scholar
  47. Ylipaasto P, Klingel K, Lindberg AM, Otonkoski T, Kandolf R, Hovi T, Roivainen M (2004) Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells. Diabetologia 47:225–239PubMedCrossRefGoogle Scholar
  48. Ylipaasto P, Kutlu B, Rasilainen S, Rasschaert J, Salmela K, Teerijoki H, Korsgren O, Lahesmaa R, Hovi T, Eizirik DL, Otonkoski T, Roivainen M (2005) Global profiling of coxsackievirus- and cytokine-induced gene expression in human pancreatic islets. Diabetologia 48:1510–1522PubMedCrossRefGoogle Scholar
  49. Ylipaasto P, Eskelinen M, Salmela K, Hovi T, Roivainen M (2010) Vitronectin receptors, alpha v integrins, are recognized by several non-RGD-containing echoviruses in a continuous laboratory cell line and also in primary human Langerhans’ islets and endothelial cells. J Gen Virol 91:155–165PubMedCrossRefGoogle Scholar
  50. Yoon JW, Onodera T, Jenson AB, Notkins AL (1978) Virus-induced diabetes-mellitus.11. Replication of coxsackie B3 virus in human pancreatic beta cell-cultures. Diabetes 27: 778–781PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Intestinal Viruses Unit, Division of Health Protection, Department of Infectious Disease Surveillance and ControlNational Institute for Health and Welfare (THL)HelsinkiFinland

Personalised recommendations