Response Tensors for Magnetized Plasmas

  • Donald Melrose
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 854)

Abstract

The generalization of the covariant classical kinetic theory of plasma responses from an unmagnetized to a magnetized plasma involves a considerable increase in algebraic complexity. As in the unmagnetized case, two different methods of calculation are available and both are useful: the forward-scattering and Vlasov methods. In the forward-scattering method, one includes a perturbing electromagnetic field

Keywords

Convolution 

References

  1. 1.
    R.L. Dewar, Aust. J. Phys. 30, 533 (1977)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    B.A. Trubnikov, Dissertation, Moscow Institute of Engineering and Physics (1958); AEC-tr-4073, US Atomic Energy Commission, Oak Ridge, Tennessee (1960)Google Scholar
  3. 3.
    F. Jüttner, Ann. der Phys. 34, 856 (1911)MATHCrossRefGoogle Scholar
  4. 4.
    J.L Synge, The Relativistic Gas (North-Holland, Amsterdam, 1957)Google Scholar
  5. 5.
    B.B. Godfrey, B.S. Newberger, K.A. Taggart, IEEE Trans. Plasma Phys. PS-3, 60, 68 (1975)ADSCrossRefGoogle Scholar
  6. 6.
    B.A.Trubnikov, V.B. Yakubov, Plasma Phys. 5, 7 (1963)Google Scholar
  7. 7.
    D.B. Fried, S.D. Conte, The Plasma Dispersion Function (Academic, New York, 1961)Google Scholar
  8. 8.
    I.P. Shkarofsky, Phys. Fluid 9, 561 (1966)ADSCrossRefGoogle Scholar
  9. 9.
    V. Krivenski, A. Orefice, J. Plasma Phys. 30, 125 (1983)ADSCrossRefGoogle Scholar
  10. 10.
    P.A. Robinson, J. Plasma Phys. 35, 187 (1986)ADSCrossRefGoogle Scholar
  11. 11.
    P.A. Robinson, J. Math. Phys. 27, 1206 (1986)MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    P.A. Robinson, J. Math. Phys. 28, 1203 (1987)MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    V.N. Dnestrovskii, D.P. Kostomorov, N.V. Skrydlov, Sov. Phys. Tech. Phys. 8, 691 (1964)Google Scholar
  14. 14.
    M. Bornatici, U. Raffina, Plasma Phys. Control. Fusion 30, 115 (1988)ADSCrossRefGoogle Scholar
  15. 15.
    M.J. Bruggen-Kerkhof, L.P.J. Kamp, F.W. Sluijter, J. Phys. A 26, 5505 (1993)MathSciNetADSMATHCrossRefGoogle Scholar
  16. 16.
    P.A. Robinson, J. Plasma Phys. 37, 435, 449 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    P.A. Robinson, J. Math. Phys. 30, 2484 (1989)MathSciNetADSMATHCrossRefGoogle Scholar
  18. 18.
    D.G. Swanson, Plasma Phys. Control. Fusion 44, 1329 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    B.S. Newberger, J. Math. Phys. 23, 1278 (1982)MathSciNetADSMATHCrossRefGoogle Scholar
  20. 20.
    D.B. Melrose, R. Yuen, Astrophys. J. 745, 169 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    P.A. Sturrock, Astrophys. J. 164, 529 (1971)ADSCrossRefGoogle Scholar
  22. 22.
    A. Levinson, D. Melrose, A. Judge, Q. Luo, Astrophys. J. 631, 456 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    A.M. Beloborodov, C. Thompson, Astrophys. J. 657, 967 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    A.N. Timokhin, Mon. Not. R. Astron. Soc. 408, 2092 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    Q. Luo, D.B. Melrose, Mon. Not. R. Astron. Soc. 387, 1291 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    B. Zhang, A.K. Harding, Astrophys. J. 532, 1159 (2000)ADSCrossRefGoogle Scholar
  27. 27.
    J.A. Hibschman, J. Arons, Astrophys. J. 560, 871 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    P.N. Arendt Jr., J.A. Eilek, Astrophys. J. 581, 451 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    M.P. Kennett, D.B. Melrose, Q. Luo, J. Plasma Phys. 64, 333 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    M. Gedalin, D.B. Melrose, E. Gruman, Phys. Rev. E 57, 3399 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    D.B. Melrose, J. Plasma Phys. 58, 735 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    V.N. Sazonov, Sov. Phys. JETP 20(9), 587 (1969)Google Scholar
  33. 33.
    D.B. Melrose, Phys. Rev. E 56, 3527 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Donald Melrose
    • 1
  1. 1.School of PhysicsUniversity of SydneySydneyAustralia

Personalised recommendations