Skip to main content

State-of-the-Art of Cognitive Radio Networks

  • Chapter
  • First Online:
Cognitive Radio Networks

Part of the book series: Analog Circuits and Signal Processing ((ACSP))

  • 1537 Accesses

Abstract

The literature of spectrum management in wireless CRNs is affluent and covers various theoretical aspects such as spectrum sensing, spectrum access, and spectrum sharing. The implementation issues and challenges of Opportunistic Spectrum Access have received far less research interest compared to the significant theoretical interest in such a promising communications paradigm. To the best of our knowledge, this book is the first to combine theory and practice as it:

  • Incorporates the practical limitations of contemporary radio transceivers into the theoretical problem formulation, and hence, the outcome solution is a framework that is not vulnerable to the implementation limitations.

  • Targets hardware with realistic features and capabilities (unlike existing implementations that target software-defined radios which provide seamless design flexibility at the expense of poor performance that cannot be used in real-life systems).

Hence, this book presents a first step towards realizing OSA and CRNs based on existing transceiver technologies without the need to wait for the currently-unavailable fully-capable cognitive radios. This book presents a bridge between both the academic and industrial communities interested in distributed ad-hoc CRNs. In this chapter, we overview the state-of-the-art of cognitive radio networking and Opportunistic Spectrum Access both from theoretical and practical points of view.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Current specified coverage range is 33 km at 4 W CPE effective isotropically radiated power (EIRP).

References

  1. Yucek, T., Arslan, H.: A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Comm. Surv. Tutorials 11(1), 116–130 (2009)

    Article  Google Scholar 

  2. Anandkumar, A., Michael, N., Tang, A.: Opportunistic spectrum access with multiple users: Learning under competition. In: Proceedings of IEEE INFOCOM 2010, San Deigo, CA (2010)

    Google Scholar 

  3. Chaporkar, P., Proutiere, A., Asnani, H.: Learning to optimally exploit multi-channel diversity in wireless systems. In: Proceedings of IEEE INFOCOM 2010, San Diego, CA (2010)

    Google Scholar 

  4. Bhandari, V., Vaidya, N.H.: Capacity of multi-channel wireless networks with random (c, f) assignment. In: Proceedings of ACM Mobihoc 2007, Montreal, Canada (2007)

    Google Scholar 

  5. Tian, Z., Giannakis, G.: Compressed sensing for wideband cognitive radios. In: Proceedings of IEEE ICASSP, Honolulu, HI (2007)

    Google Scholar 

  6. Liu, H., Krishnamachari, B.: Randomized strategies for multi-user multi-channel opportunity sensing. In: Proceedings of IEEE CCNC Cognitive Radio Networks Workshop, Las Vegas, NV (2008)

    Google Scholar 

  7. Liang, Z., Liu, W., Zhou, P., Gao, F.: Randomized multi-user strategy for spectrum sharing in opportunistic spectrum access network. In: Proceedings of IEEE ICC Workshops, Beijing, China (2008)

    Google Scholar 

  8. Ahmad, B.I., Tarczynski, A.: Reliable wideband multichannel spectrum sensing using randomized sampling schemes. Signal Process. 90(7), 2232–2242 (2010)

    Article  MATH  Google Scholar 

  9. Lapiccirella, F.E., Ding, Z., Liu, X.: Cognitive spectrum access control based on intrinsic primary ARQ information. In: Proceedings of IEEE ICC 2010, Cape Town, South Africa (2010)

    Google Scholar 

  10. Lee, C.H. Haenggi, M.: Delay analysis of spatio-temporal channel access for cognitive networks. In: Proceedings of IEEE ICC 2011, Kyoto, Japan (2011)

    Google Scholar 

  11. Wild, B., Ramchandran, K.: Detecting primary receivers for cognitive radio applications. In: Proceedings of IEEE DySPAN 2005, Baltimore, MD (2005)

    Google Scholar 

  12. Mishra, S.M., Sahai, A., Brodersen, R.W.: Cooperative sensing among cognitive radios. In: Proceedings of IEEE ICC 2006, Istanbul, Turkey (2006)

    Google Scholar 

  13. Salameh, H.B., Krunz, M.: Channel access protocols for multihop opportunistic networks: challenges and recent developments. IEEE Networks 23(4), 14–19 (2009)

    Article  Google Scholar 

  14. Akyildiz, I.F., Lee, W.Y., Chowdhury, K.R.: CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks (Elsevier) 7(5), 810–836 (2009)

    Google Scholar 

  15. Raman, C., Yates, R.D., Mandayam, N.B.: Scheduling variable rate links via a spectrum server. In: Proceedings of IEEE DySPAN 2005, Baltimore, MD (2005)

    Google Scholar 

  16. Lotfinezhad, M., Liang, B., Sousa, E.S.: Optimal control of constrained cognitive radio networks with dynamic population size. In: Proceedings of IEEE INFOCOM 2010, San Diego, CA (2010)

    Google Scholar 

  17. Hosseinabadi, G., Manshaei, M.H., Hubaux, J.P.: Spectrum sharing games of infrastructure-based cognitive radio networks. Tech. rep. http://infoscience.epfl.ch/record/128112?ln=en (2008)

  18. Zhao, Q., Tong, L., Swami, A., Chen, Y.: Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMPD framework. IEEE J. Sel. Area. Comm. 25(3), 589–600 (2007)

    Article  Google Scholar 

  19. Huang, S., Liu, X., Ding, Z.: Opportunistic spectrum access in cognitive radio networks. In: Proceedings of IEEE INFOCOM 2008, Phoenix, AZ (2008)

    Google Scholar 

  20. Wang, F., Krunz, M., Cui, S.: Price-based spectrum management in cognitive radio networks. IEEE J. Sel. Top. Signal Process. 2(1), 74–87 (2008)

    Article  Google Scholar 

  21. Xu, H., Li, B.: Efficient resource allocation with flexible channel cooperation in OFDMA cognitive radio networks. In: Proceedings of IEEE INFOCOM 2010, San Diego, CA (2010)

    Google Scholar 

  22. Salameh, H.B., Krunz, M., Younis, O.: MAC protocol for opportunistic cognitive radio networks with soft guarantees. IEEE Trans. Mobile Comput. 8(10), 1339–1352 (2009)

    Article  Google Scholar 

  23. IEEE Working Group on Wireless Regional Area Networks: Enabling rural broadband wireless access using cognitive radio technology in TV whitespaces. http://www.ieee802.org/22/. Accessed 25 July 2012

  24. Benko, J., Chang, S.Y., Cheong, Y.C., Cordeiro, C., Gao, W., Hu, W., Khalona, R., Kim, C.J., Kim, H.S., Kuffner, S., Laskar, J., Liang, Y.C., Sofer, E.: IEEE802.22-06/0069r2: Draft PHY/MAC specification for IEEE 802.22 (2006)

    Google Scholar 

  25. IEEE DySPAN Standards Committee: Dynamic Spectrum Access Networks (DySPAN). http://www.dyspan-sc.org/. Accessed 25 July 2012

  26. Mitola III, J.: Cognitive radio: An integrated agent architecture for software defined radio. Ph.D. thesis, KTH Royal Institute of Technology (2000)

    Google Scholar 

  27. Mitola III, J.: Cognitive radio for flexible mobile multimedia communication. In: Proceedings of IEEE International Workshop on Mbile Multimedia Communications (MoMuC), San Diego, CA (1999)

    Google Scholar 

  28. Ettus Research LLC: http://www.ettus.com/. Accessed 25 July 2012

  29. GNU Radio: http://gnuradio.org/redmine/projects/gnuradio/wiki. Accessed 25 July 2012

  30. CROSS: Cognitive Radio Open Source System. http://cornet.wireless.vt.edu/trac/wiki/Cross. Accessed 25 July 2012

  31. Yang, L., Zhang, Z., Hou, W., Zhao, B.Y., Zheng, H.: Papyrus: A software platform for distributed dynamic spectrum sharing using SDRs. ACM SIGCOMM Comput. Comm. Rev. 41, 31–37 (2011)

    Article  MATH  Google Scholar 

  32. Tan, K., Zhang, J., Fang, J., Liu, H., Ye, Y., Wang, S., Zhang, Y., Wu, H., Wang, W., Voelker, G.M.: Sora: High-performance software radio using general-purpose multi-core processors. Comm. ACM 54, 99–107 (2011)

    Article  Google Scholar 

  33. Nychis, G., Hottelier, T., Yang, Z., Seshan, S., Steenkiste, P.: Enabling MAC protocol implementations on software-defined radios. In: Proceedings of USENIX symposium on NSDI, Boston, MA (2009)

    Google Scholar 

  34. Sharma, A., Belding, E.M.: FreeMAC: Framework for multi-channel MAC development on 802.11 hardware. In: Proceedings of ACM PRESTO’08 Workshop, Seattle, WA (2008)

    Google Scholar 

  35. Lu, M.H., Steenkiste, P., Chen, T.: FlexMAC: A wireless protocol development and evaluation platform based on commodity hardware. In: Proceedings of ACM WiNTECH 2008, San Francisco, CA (2008)

    Google Scholar 

  36. Sharma, A., Tiwari, M., Zheng, H.: MadMAC: Building a reconfigurable radio testbed using commodity 802.11 hardware. In: Proceedings of IEEE SECON WSDR, Reston, VA (2006)

    Google Scholar 

  37. Doerr, C., Neufeld, M., Fifield, J., Weingart, T., Sicker, D., Grunwald, D.: MultiMAC - an adaptive MAC framework for dynamic radio networking. In: Proceedings of IEEE DySPAN 2005, Baltimore, MD (2005)

    Google Scholar 

  38. Messerschmitt, D.G.: Rethinking components: From hardware and software to systems. Proc. IEEE 95, 1473–1496 (2007)

    Article  Google Scholar 

  39. Miljanic, Z., Seskar, I., Le, K., Raychaudhuri, D.: The WINLAB network centric cognitive radio platform - WiNC2R. In: Proceedings of CrownComm 2007, Orlando, FL (2007)

    Google Scholar 

  40. Marshall, P.: Extending the reach of cognitive radio. Proc. IEEE 97, 612–625 (2009)

    Article  Google Scholar 

  41. DARPA’s Wieless Network after Next Project: http://www.darpa.mil/Our_Work/STO/Programs/Wireless_Network_after_Next_(WNAN).aspx. Accessed 25 July 2012

  42. Ansari, J., Zhang, X., Achtzehn, A., Petrova, M., Mahonen, P.: A flexible mac development framework for cognitive radio systems. In: Wireless Communications and Networking Conference (WCNC), 2011 IEEE, Quintana Roo, Mexico (2011)

    Google Scholar 

  43. Rice University WARP Project: http://warp.rice.edu. Accessed 25 July 2012

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Khattab, A., Perkins, D., Bayoumi, M. (2013). State-of-the-Art of Cognitive Radio Networks. In: Cognitive Radio Networks. Analog Circuits and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4033-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-4033-8_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-4032-1

  • Online ISBN: 978-1-4614-4033-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics