Fertilization

  • Matthew R. Marcello
  • Gunasekaran Singaravelu
  • Andrew Singson
Chapter
Part of the Advances in Experimental Medicine and Biology book series (volume 757)

Abstract

Fertilization—the fusion of gametes to produce a new organism—is the culmination of a multitude of intricately regulated cellular processes. In Caenorhabditis elegans, fertilization is highly efficient. Sperm become fertilization competent after undergoing a maturation process during which they become motile, and the plasma membrane protein composition is reorganized in preparation for interaction with the oocyte. The highly specialized gametes begin their interactions by signaling to one another to ensure that fertilization occurs when they meet. The oocyte releases prostaglandin signals to help guide the sperm to the site of fertilization, and sperm secrete a protein called major sperm protein (MSP) to trigger oocyte maturation and ovulation. Upon meeting one another in the spermatheca, the sperm and oocyte fuse in a specific and tightly regulated process. Recent studies are providing new insights into the molecular basis of this fusion process. After fertilization, the oocyte must quickly transition from the relative quiescence of oogenesis to a phase of rapid development during the cleavage divisions of early embryogenesis. In addition, the fertilized oocyte must prevent other sperm from fusing with it as well as produce an eggshell for protection during external development. This chapter will review the nature and regulation of the various cellular processes of fertilization, including the development of fertilization competence, gamete signaling, sperm–oocyte fusion, the oocyte to embryo transition, and production of an eggshell to protect the developing embryo.

Keywords

Fertilization Oocyte-to-embryo transition Egg activation Spermiogenesis Sperm activation Eggshell Polyspermy Sperm migration PUFA-derived signals Major sperm protein (MSP) 

Notes

Acknowledgments

We thank the anonymous reviewers and Drs. Tim Schedl, Diane Shakes, and David Greenstein for their helpful comments and suggestions. We also thank the members of the Singson laboratory, Roopa Kalyanaraman Marcello, and Dr. Sara K. Olson for critical comments and editorial assistance. This work was supported by a grant from the National Institutes of Health to AS [R01HD054681-06]. MRM is a UMDNJ-RWJMS IRACDA Postdoctoral Fellow supported by NIH Grant GM093854.

References

  1. Abbas M, Cain GD (1979) In vitro activation and behavior of the ameboid sperm of Ascaris suum (Nematoda). Cell Tissue Res 200(2):273–284PubMedGoogle Scholar
  2. Al Rawi S, Louvet-Vallee S, Djeddi A, Sachse M, Culetto E, Hajjar C, Boyd L, Legouis R, Galy V (2011) Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 334(6059):1144–1147. doi:science.1211878[pii]10.1126/science.1211878PubMedGoogle Scholar
  3. Alberti A, Michelet X, Djeddi A, Legouis R (2010) The autophagosomal protein LGG-2 acts synergistically with LGG-1 in dauer formation and longevity in C. elegans. Autophagy 6(5). doi:12252[pii]Google Scholar
  4. Albertson DG (1984) Formation of the first cleavage spindle in nematode embryos. Dev Biol 101(1):61–72. doi:0012-1606(84)90117-9[pii]PubMedGoogle Scholar
  5. Albertson DG, Thomson JN (1993) Segregation of holocentric chromosomes at meiosis in the nematode, Caenorhabditis elegans. Chromosome Res 1(1):15–26PubMedGoogle Scholar
  6. Baird SE, Yen WC (2000) Reproductive isolation in Caenorhabditis: terminal phenotypes of hybrid embryos. Evol Dev 2(1):9–15PubMedGoogle Scholar
  7. Baird SE, Sutherlin ME, Emmons SW (1992) Reproductive isolation in Rhabditidae (Nematoda: Secernentea); mechanisms that isolate six species of three genera. Evolution 46(3):585–594Google Scholar
  8. Baker AM, Roberts TM, Stewart M (2002) 2.6 A resolution crystal structure of helices of the motile major sperm protein (MSP) of Caenorhabditis elegans. J Mol Biol 319(2):491–499. doi:10.1016/S0022-2836(02)00294-2 S0022-2836(02)00294-2[pii]Google Scholar
  9. Baldi C, Viviano J, Ellis RE (2011) A bias caused by ectopic development produces sexually dimorphic sperm in nematodes. Curr Biol 21(16):1416–1420. doi:S0960-9822(11)00835-9[pii]10.1016/j.cub.2011.07.034PubMedGoogle Scholar
  10. Balzar M, Briaire-de Bruijn IH, Rees-Bakker HA, Prins FA, Helfrich W, de Leij L, Riethmuller G, Alberti S, Warnaar SO, Fleuren GJ, Litvinov SV (2001) Epidermal growth factor-like repeats mediate lateral and reciprocal interactions of Ep-CAM molecules in homophilic adhesions. Mol Cell Biol 21(7):2570–2580. doi:10.1128/MCB.21.7.2570-2580.2001PubMedGoogle Scholar
  11. Batchelder EL, Hollopeter G, Campillo C, Mezanges X, Jorgensen EM, Nassoy P, Sens P, Plastino J (2011) Membrane tension regulates motility by controlling lamellipodium organization. Proc Natl Acad Sci USA 108(28):11429–11434. doi:1010481108[pii]10.1073/pnas.1010481108PubMedGoogle Scholar
  12. Bembenek JN, Richie CT, Squirrell JM, Campbell JM, Eliceiri KW, Poteryaev D, Spang A, Golden A, White JG (2007) Cortical granule exocytosis in C. elegans is regulated by cell cycle components including separase. Development 134(21):3837–3848. doi:dev.011361[pii]10.1242/dev.011361PubMedGoogle Scholar
  13. Bodding M (2007) TRP proteins and cancer. Cell Signal 19(3):617–624. doi:S0898-6568(06)00206-3[pii]10.1016/j.cellsig.2006.08.012PubMedGoogle Scholar
  14. Bowerman B, Kurz T (2006) Degrade to create: developmental requirements for ubiquitin-mediated proteolysis during early C. elegans embryogenesis. Development 133(5):773–784. doi:133/5/773[pii]10.1242/dev.02276PubMedGoogle Scholar
  15. Browning H, Strome S (1996) A sperm-supplied factor required for embryogenesis in C. elegans. Development 122(1):391–404PubMedGoogle Scholar
  16. Bullock TL, Parthasarathy G, King KL, Kent HM, Roberts TM, Stewart M (1996a) New crystal forms of the motile major sperm protein (MSP) of Ascaris suum. J Struct Biol 116(3):432–437. doi:S1047-8477(96)90061-1[pii]10.1006/jsbi.1996.0061PubMedGoogle Scholar
  17. Bullock TL, Roberts TM, Stewart M (1996b) 2.5 A resolution crystal structure of the motile major sperm protein (MSP) of Ascaris suum. J Mol Biol 263(2):284–296. doi:S0022-2836(96)90575-6[pii]10.1006/jmbi.1996.0575PubMedGoogle Scholar
  18. Buttery SM, Ekman GC, Seavy M, Stewart M, Roberts TM (2003) Dissection of the Ascaris sperm motility machinery identifies key proteins involved in major sperm protein-based amoeboid locomotion. Mol Biol Cell 14(12):5082–5088. doi:10.1091/mbc.E03-04-0246 E03-04-0246[pii]PubMedGoogle Scholar
  19. Chakrabarti R, Cheng L, Puri P, Soler D, Vijayaraghavan S (2007) Protein phosphatase PP1 gamma 2 in sperm morphogenesis and epididymal initiation of sperm motility. Asian J Androl 9(4):445–452. doi:10.1111/j.1745-7262.2007.00307.xPubMedGoogle Scholar
  20. Chatterjee I, Richmond A, Putiri E, Shakes DC, Singson A (2005) The Caenorhabditis elegans spe-38 gene encodes a novel four-pass integral membrane protein required for sperm function at fertilization. Development 132(12):2795–2808. doi:132/12/2795[pii]10.1242/dev.01868PubMedGoogle Scholar
  21. Cheng KC, Klancer R, Singson A, Seydoux G (2009) Regulation of MBK-2/DYRK by CDK-1 and the pseudophosphatases EGG-4 and EGG-5 during the oocyte-to-embryo transition. Cell 139(3):560–572. doi:S0092-8674(09)01187-8[pii]10.1016/j.cell.2009.08.047PubMedGoogle Scholar
  22. Chu DS, Shakes DC (2012) Spermatogenesis. Advances in Experimental Medicine and Biology 757:171–203. (Chap. 7, this volume) Springer, New YorkGoogle Scholar
  23. Chung MK, Jung SJ, Oh SB (2011) Role of TRP channels in pain sensation. Advances in Experimental Medicine and Biology 704:615–636. doi:10.1007/978-94-007-0265-3_33PubMedGoogle Scholar
  24. Cowan CR, Hyman AA (2004) Centrosomes direct cell polarity independently of microtubule assembly in C. elegans embryos. Nature 431(7004):92–96. doi:10.1038/nature02825 nature02825[pii]Google Scholar
  25. Dammermann A, Maddox PS, Desai A, Oegema K (2008) SAS-4 is recruited to a dynamic structure in newly forming centrioles that is stabilized by the gamma-tubulin-mediated addition of centriolar microtubules. J Cell Biol 180(4):771–785. doi:jcb.200709102[pii]10.1083/jcb.200709102PubMedGoogle Scholar
  26. Davis ES, Wille L, Chestnut BA, Sadler PL, Shakes DC, Golden A (2002) Multiple subunits of the Caenorhabditis elegans anaphase-promoting complex are required for chromosome segregation during meiosis I. Genetics 160(2):805–813PubMedGoogle Scholar
  27. Detwiler MR, Reuben M, Li X, Rogers E, Lin R (2001) Two zinc finger proteins, OMA-1 and OMA-2, are redundantly required for oocyte maturation in C. elegans. Dev Cell 1(2):187–199. doi:S1534-5807(01)00026-0[pii]Google Scholar
  28. Dietrich A, Chubanov V, Gudermann T (2010) Renal TRPathies. J Am Soc Nephrol 21(5):736–744. doi:ASN.2009090948[pii]10.1681/ASN.2009090948PubMedGoogle Scholar
  29. Eder P, Molkentin JD (2011) TRPC channels as effectors of cardiac hypertrophy. Circ Res 108(2):265–272. doi:108/2/265[pii]10.1161/CIRCRESAHA.110.225888PubMedGoogle Scholar
  30. Edmonds JW, Prasain JK, Dorand D, Yang Y, Hoang HD, Vibbert J, Kubagawa HM, Miller MA (2010) Insulin/FOXO signaling regulates ovarian prostaglandins critical for reproduction. Dev Cell 19(6):858–871. doi:S1534-5807(10)00532-0[pii]10.1016/j.devcel.2010.11.005PubMedGoogle Scholar
  31. Eppig JJ (1996) Coordination of nuclear and cytoplasmic oocyte maturation in eutherian mammals. Reprod Fertil Dev 8(4):485–489PubMedGoogle Scholar
  32. Fraire-Zamora JJ, Broitman-Maduro G, Maduro M, Cardullo RA (2011) Evidence for phosphorylation in the MSP cytoskeletal filaments of amoeboid spermatozoa. Int J Biochem Mol Biol 2(3):263–273PubMedGoogle Scholar
  33. Furuta T, Tuck S, Kirchner J, Koch B, Auty R, Kitagawa R, Rose AM, Greenstein D (2000) EMB-30: an APC4 homologue required for metaphase-to-anaphase transitions during meiosis and mitosis in Caenorhabditis elegans. Mol Biol Cell 11(4):1401–1419PubMedGoogle Scholar
  34. Geldziler B, Kadandale P, Singson A (2004) Molecular genetic approaches to studying fertilization in model systems. Reproduction 127(4):409–416. doi:10.1530/rep. 1.00009 127/4/409[pii]PubMedGoogle Scholar
  35. Geldziler B, Marcello MR, Shakes DC, Singson A (2011) The genetics and cell biology fertilization. In: Rothman JL, Singson A (eds) Caenorhabditis elegans: molecular genetics and development, methods in cell biology, vol 106. Elsevier, OxfordGoogle Scholar
  36. Golden A, Sadler PL, Wallenfang MR, Schumacher JM, Hamill DR, Bates G, Bowerman B, Seydoux G, Shakes DC (2000) Metaphase to anaphase (mat) transition-defective mutants in Caenorhabditis elegans. J Cell Biol 151(7):1469–1482PubMedGoogle Scholar
  37. Grant B, Hirsh D (1999) Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Mol Biol Cell 10(12):4311–4326PubMedGoogle Scholar
  38. Grant RP, Buttery SM, Ekman GC, Roberts TM, Stewart M (2005) Structure of MFP2 and its function in enhancing MSP polymerization in Ascaris sperm amoeboid motility. J Mol Biol 347(3):583–595. doi:S0022-2836(05)00099-9[pii]10.1016/j.jmb.2005.01.054PubMedGoogle Scholar
  39. Guven-Ozkan T, Nishi Y, Robertson SM, Lin R (2008) Global transcriptional repression in C. elegans germline precursors by regulated sequestration of TAF-4. Cell 135(1):149–160. doi:S0092-8674(08)00960-4[pii]10.1016/j.cell.2008.07.040Google Scholar
  40. Haaf A, Butler PJ, Kent HM, Fearnley IM, Roberts TM, Neuhaus D, Stewart M (1996) The motile major sperm protein (MSP) from Ascaris suum is a symmetric dimer in solution. J Mol Biol 260(2):251–260. doi:S0022283696903964[pii]PubMedGoogle Scholar
  41. Hamill DR, Severson AF, Carter JC, Bowerman B (2002) Centrosome maturation and mitotic spindle assembly in C. elegans require SPD-5, a protein with multiple coiled-coil domains. Dev Cell 3(5):673–684. doi:S1534580702003271[pii]Google Scholar
  42. Han SM, Cottee PA, Miller MA (2010) Sperm and oocyte communication mechanisms controlling C. elegans fertility. Dev Dyn 239(5):1265–1281. doi:10.1002/dvdy.22202PubMedGoogle Scholar
  43. Harris MT, Lai K, Arnold K, Martinez HF, Specht CA, Fuhrman JA (2000) Chitin synthase in the filarial parasite, Brugia malayi. Mol Biochem Parasitol 111(2):351–362. doi:S0166685100003285[pii]PubMedGoogle Scholar
  44. Hill KL, L’Hernault SW (2001) Analyses of reproductive interactions that occur after heterospecific matings within the genus Caenorhabditis. Dev Biol 232(1):105–114. doi:10.1006/dbio.2000.0136 S0012-1606(00)90136-2[pii]PubMedGoogle Scholar
  45. Hill DP, Shakes DC, Ward S, Strome S (1989) A sperm-supplied product essential for initiation of normal embryogenesis in Caenorhabditis elegans is encoded by the paternal-effect embryonic-lethal gene, spe-11. Dev Biol 136(1):154–166. doi:0012-1606(89)90138-3[pii]PubMedGoogle Scholar
  46. Hirsh D, Oppenheim D, Klass M (1976) Development of the reproductive system of Caenorhabditis elegans. Dev Biol 49(1):200–219. doi:0012-1606(76)90267-0[pii]PubMedGoogle Scholar
  47. Horner VL, Wolfner MF (2008) Transitioning from egg to embryo: triggers and mechanisms of egg activation. Dev Dyn 237(3):527–544. doi:10.1002/dvdy.21454PubMedGoogle Scholar
  48. Huang Z, Vijayaraghavan S (2004) Increased phosphorylation of a distinct subcellular pool of protein phosphatase, PP1gamma2, during epididymal sperm maturation. Biol Reprod 70(2):439–447. doi:10.1095/biolreprod.103.020024 biolreprod.103.020024[pii]PubMedGoogle Scholar
  49. Hwang HY, Horvitz HR (2002) The SQV-1 UDP-glucuronic acid decarboxylase and the SQV-7 nucleotide-sugar transporter may act in the Golgi apparatus to affect Caenorhabditis ­elegans vulval morphogenesis and embryonic development. Proc Natl Acad Sci USA 99(22):14218–14223. doi:10.1073/pnas.172522199PubMedGoogle Scholar
  50. Italiano JE Jr, Roberts TM, Stewart M, Fontana CA (1996) Reconstitution in vitro of the motile apparatus from the amoeboid sperm of Ascaris shows that filament assembly and bundling move membranes. Cell 84(1):105–114. doi:S0092-8674(00)80997-6[pii]PubMedGoogle Scholar
  51. Italiano JE Jr, Stewart M, Roberts TM (2001) How the assembly dynamics of the nematode major sperm protein generate amoeboid cell motility. Int Rev Cytol 202:1–34PubMedGoogle Scholar
  52. Jenkins N, Saam JR, Mango SE (2006) CYK-4/GAP provides a localized cue to initiate anteroposterior polarity upon fertilization. Science 313(5791):1298–1301. doi:1130291[pii]10.1126/science.1130291PubMedGoogle Scholar
  53. Johnston WL, Krizus A, Dennis JW (2006) The eggshell is required for meiotic fidelity, polar-body extrusion and polarization of the C. elegans embryo. BMC Biol 4:35. doi:1741-7007-4-35[pii]10.1186/1741-7007-4-35PubMedGoogle Scholar
  54. Johnston WL, Krizus A, Dennis JW (2010) Eggshell chitin and chitin-interacting proteins prevent polyspermy in C. elegans. Curr Biol 20(21):1932–1937. doi:S0960-9822(10)01216-9[pii]10.1016/j.cub.2010.09.059PubMedGoogle Scholar
  55. Kadandale P, Stewart-Michaelis A, Gordon S, Rubin J, Klancer R, Schweinsberg P, Grant BD, Singson A (2005) The egg surface LDL receptor repeat-containing proteins EGG-1 and EGG-2 are required for fertilization in Caenorhabditis elegans. Curr Biol 15(24):2222–2229. doi:S0960-9822(05)01296-0[pii]10.1016/j.cub.2005.10.043PubMedGoogle Scholar
  56. Kaitna S, Mendoza M, Jantsch-Plunger V, Glotzer M (2000) Incenp and an aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis. Curr Biol 10(19):1172–1181. doi:S0960-9822(00)00721-1[pii]PubMedGoogle Scholar
  57. Kim S, Spike CA, Greenstein D (2012) Control of oocyte growth and meiotic maturation in C. elegans. Advances in Experimental Medicine and Biology 757:277–320. (Chap. 10, this ­volume) Springer, New YorkGoogle Scholar
  58. Kimble J, Hirsh D (1979) The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Dev Biol 70(2):396–417. doi:0012-1606(79)90035-6[pii]PubMedGoogle Scholar
  59. King KL, Essig J, Roberts TM, Moerland TS (1994) Regulation of the Ascaris major sperm protein (MSP) cytoskeleton by intracellular pH. Cell Motil Cytoskeleton 27(3):193–205. doi:10.1002/cm.970270302PubMedGoogle Scholar
  60. Kiontke K, Fitch DH (2005) The phylogenetic relationships of Caenorhabditis and other rhabditids. WormBook:1–11. doi:10.1895/wormbook.1.11.1Google Scholar
  61. Kiselyov K, Soyombo A, Muallem S (2007) TRPpathies. J Physiol 578(Pt 3):641–653. doi:jphysiol.2006.119024[pii]10.1113/jphysiol.2006.119024PubMedGoogle Scholar
  62. Klass M, Wolf N, Hirsh D (1976) Development of the male reproductive system and sexual transformation in the nematode Caenorhabditis elegans. Dev Biol 52(1):1–18. doi:0012-1606(76)90002-6[pii]PubMedGoogle Scholar
  63. Kosinski M, McDonald K, Schwartz J, Yamamoto I, Greenstein D (2005) C. elegans sperm bud vesicles to deliver a meiotic maturation signal to distant oocytes. Development 132(15):3357–3369. doi:dev.01916[pii]10.1242/dev.01916PubMedGoogle Scholar
  64. Kroft TL, Gleason EJ, L’Hernault SW (2005) The spe-42 gene is required for sperm-egg interactions during C. elegans fertilization and encodes a sperm-specific transmembrane protein. Dev Biol 286(1):169–181. doi:S0012-1606(05)00476-8[pii]10.1016/j.ydbio.2005.07.020PubMedGoogle Scholar
  65. Kubagawa HM, Watts JL, Corrigan C, Edmonds JW, Sztul E, Browse J, Miller MA (2006) Oocyte signals derived from polyunsaturated fatty acids control sperm recruitment in vivo. Nat Cell Biol 8(10):1143–1148. doi:ncb1476[pii]10.1038/ncb1476PubMedGoogle Scholar
  66. LaMunyon CW, Ward S (1998) Larger sperm outcompete smaller sperm in the nematode Caenorhabditis elegans. Proc Biol Sci 265(1409):1997–2002. doi:10.1098/rspb.1998.0531PubMedGoogle Scholar
  67. LeClaire LL 3rd, Stewart M, Roberts TM (2003) A 48 kDa integral membrane phosphoprotein orchestrates the cytoskeletal dynamics that generate amoeboid cell motility in Ascaris sperm. J Cell Sci 116(Pt 13):2655–2663. doi:10.1242/jcs.00469 jcs.00469[pii]PubMedGoogle Scholar
  68. Lee MH, Schedl T (2001) Identification of in vivo mRNA targets of GLD-1, a maxi-KH motif containing protein required for C. elegans germ cell development. Genes Dev 15(18):2408–2420. doi:10.1101/gad.915901PubMedGoogle Scholar
  69. L’Hernault SW (2006) Spermatogenesis. WormBook:1–14. doi:10.1895/wormbook.1.85.1Google Scholar
  70. L’Hernault SW, Roberts TM (1995) Cell biology of nematode sperm. In: Caenorhabditis ­elegans: modern biological analysis of an organism, vol 48. Academic Press, San Diego, pp 273–301Google Scholar
  71. L’Hernault SW, Shakes DC, Ward S (1988) Developmental genetics of chromosome I spermatogenesis-defective mutants in the nematode Caenorhabditis elegans. Genetics 120(2):435–452PubMedGoogle Scholar
  72. Liu J, Maller JL (2005) Calcium elevation at fertilization coordinates phosphorylation of XErp1/Emi2 by Plx1 and CaMK II to release metaphase arrest by cytostatic factor. Curr Biol 15(16):1458–1468. doi:S0960-9822(05)00774-8[pii]10.1016/j.cub.2005.07.030PubMedGoogle Scholar
  73. Lu C, Mains PE (2007) The C. elegans anaphase promoting complex and MBK-2/DYRK kinase act redundantly with CUL-3/MEL-26 ubiquitin ligase to degrade MEI-1 microtubule-severing activity after meiosis. Dev Biol 302(2):438–447. doi:S0012-1606(06)01269-3[pii]10.1016/j.ydbio.2006.09.053PubMedGoogle Scholar
  74. Madl JE, Herman RK (1979) Polyploids and sex determination in Caenorhabditis elegans. Genetics 93(2):393–402PubMedGoogle Scholar
  75. Maeda I, Kohara Y, Yamamoto M, Sugimoto A (2001) Large-scale analysis of gene function in Caenorhabditis elegans by high-throughput RNAi. Curr Biol 11(3):171–176. doi:S0960-9822(01)00052-5[pii]PubMedGoogle Scholar
  76. Marcello MR, Singson A (2010) Fertilization and the oocyte-to-embryo transition in C. elegans. BMB Rep 43(6):389–399PubMedGoogle Scholar
  77. Maruyama R, Velarde NV, Klancer R, Gordon S, Kadandale P, Parry JM, Hang JS, Rubin J, Stewart-Michaelis A, Schweinsberg P, Grant BD, Piano F, Sugimoto A, Singson A (2007) EGG-3 regulates cell-surface and cortex rearrangements during egg activation in Caenorhabditis elegans. Curr Biol 17(18):1555–1560. doi:S0960-9822(07)01787-3[pii]10.1016/j.cub.2007.08.011PubMedGoogle Scholar
  78. Masui Y, Clarke HJ (1979) Oocyte maturation. Int Rev Cytol 57:185–282PubMedGoogle Scholar
  79. McCarter J, Bartlett B, Dang T, Schedl T (1999) On the control of oocyte meiotic maturation and ovulation in Caenorhabditis elegans. Dev Biol 205(1):111–128. doi:S0012-1606(98)99109-6[pii]10.1006/dbio.1998.9109PubMedGoogle Scholar
  80. McNally KL, McNally FJ (2005) Fertilization initiates the transition from anaphase I to metaphase II during female meiosis in C. elegans. Dev Biol 282(1):218–230. doi:S0012-1606(05)00177-6[pii]10.1016/j.ydbio.2005.03.009PubMedGoogle Scholar
  81. Mensah KA, Ritchlin CT, Schwarz EM (2010) RANKL induces heterogeneous DC-STAMP(lo) and DC-STAMP(hi) osteoclast precursors of which the DC-STAMP(lo) precursors are the master fusogens. J Cell Physiol 223(1):76–83. doi:10.1002/jcp. 22012PubMedGoogle Scholar
  82. Miao L, Vanderlinde O, Stewart M, Roberts TM (2003) Retraction in amoeboid cell motility powered by cytoskeletal dynamics. Science 302(5649):1405–1407. doi:10.1126/science.1089129 302/5649/1405[pii]PubMedGoogle Scholar
  83. Miller MA, Nguyen VQ, Lee MH, Kosinski M, Schedl T, Caprioli RM, Greenstein D (2001) A sperm cytoskeletal protein that signals oocyte meiotic maturation and ovulation. Science 291(5511):2144–2147. doi:10.1126/science.1057586 291/5511/2144[pii]PubMedGoogle Scholar
  84. Miyamoto T (2006) The dendritic cell-specific transmembrane protein DC-STAMP is essential for osteoclast fusion and osteoclast bone-resorbing activity. Mod Rheumatol 16(6):341–342. doi:10.1007/s10165-006-0524-0PubMedGoogle Scholar
  85. Mizushima N (2007) Autophagy: process and function. Genes Dev 21(22):2861–2873. doi:21/22/2861[pii]10.1101/gad.1599207PubMedGoogle Scholar
  86. Morsci NS, Haas LA, Barr MM (2011) Sperm status regulates sexual attraction in Caenorhabditis elegans. Genetics. doi:genetics.111.133603[pii]10.1534/genetics.111.133603Google Scholar
  87. Nakatogawa H, Suzuki K, Kamada Y, Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10(7):458–467. doi:nrm2708[pii]10.1038/nrm2708PubMedGoogle Scholar
  88. Nigon V, Dougherty EC (1949) Reproductive patterns and attempts at reciprocal crossing of Rhabditis elegans Maupas, 1900, and Rhabditis briggsae Dougherty and Nigon, 1949 (Nematoda: Rhabditidae). J Exp Zool 112(3):485–503PubMedGoogle Scholar
  89. Nishi Y, Rogers E, Robertson SM, Lin R (2008) Polo kinases regulate C. elegans embryonic polarity via binding to DYRK2-primed MEX-5 and MEX-6. Development 135(4):687–697. doi:dev.013425[pii]10.1242/dev.013425PubMedGoogle Scholar
  90. Nishimura H, L’Hernault SW (2010) Spermatogenesis-defective (spe) mutants of the nematode Caenorhabditis elegans provide clues to solve the puzzle of male germline functions during reproduction. Dev Dyn 239(5):1502–1514. doi:10.1002/dvdy.22271PubMedGoogle Scholar
  91. Nykjaer A, Willnow TE (2002) The low-density lipoprotein receptor gene family: a cellular Swiss army knife? Trends Cell Biol 12(6):273–280. doi:S0962892402022821[pii]PubMedGoogle Scholar
  92. O’Connell KF, Maxwell KN, White JG (2000) The spd-2 gene is required for polarization of the anteroposterior axis and formation of the sperm asters in the Caenorhabditis elegans zygote. Dev Biol 222(1):55–70. doi:S0012-1606(00)99714-8[pii]10.1006/dbio.2000.9714PubMedGoogle Scholar
  93. Olson SK, Bishop JR, Yates JR, Oegema K, Esko JD (2006) Identification of novel chondroitin proteoglycans in Caenorhabditis elegans: embryonic cell division depends on CPG-1 and CPG-2. J Cell Biol 173(6):985–994. doi:jcb.200603003[pii]10.1083/jcb.200603003PubMedGoogle Scholar
  94. Oppedisano L, Haines G, Hrabchak C, Fimia G, Elliott R, Sassone-Corsi P, Varmuza S (2002) The rate of aneuploidy is altered in spermatids from infertile mice. Hum Reprod 17(3):710–717PubMedGoogle Scholar
  95. Pang KM, Ishidate T, Nakamura K, Shirayama M, Trzepacz C, Schubert CM, Priess JR, Mello CC (2004) The minibrain kinase homolog, mbk-2, is required for spindle positioning and asymmetric cell division in early C. elegans embryos. Dev Biol 265(1):127–139. doi:S0012160603005761[pii]Google Scholar
  96. Parry JM, Singson A (2011) EGG molecules couple the oocyte-to-embryo transition with cell cycle progression. Results Probl Cell Differ 53:135–151. doi:10.1007/978-3-642-19065-0_7PubMedGoogle Scholar
  97. Parry JM, Velarde NV, Lefkovith AJ, Zegarek MH, Hang JS, Ohm J, Klancer R, Maruyama R, Druzhinina MK, Grant BD, Piano F, Singson A (2009) EGG-4 and EGG-5 link events of the oocyte-to-embryo transition with meiotic progression in C. elegans. Curr Biol 19(20):1752–1757. doi:S0960-9822(09)01692-3[pii]10.1016/j.cub.2009.09.015PubMedGoogle Scholar
  98. Pelletier L, O’Toole E, Schwager A, Hyman AA, Muller-Reichert T (2006) Centriole assembly in Caenorhabditis elegans. Nature 444(7119):619–623. doi:nature05318[pii]10.1038/nature05318PubMedGoogle Scholar
  99. Pellettieri J, Reinke V, Kim SK, Seydoux G (2003) Coordinate activation of maternal protein degradation during the egg-to-embryo transition in C. elegans. Dev Cell 5(3):451–462. doi:S1534580703002314[pii]Google Scholar
  100. Portereiko MF, Mango SE (2001) Early morphogenesis of the Caenorhabditis elegans pharynx. Dev Biol 233(2):482–494. doi:10.1006/dbio.2001.0235 S0012-1606(01)90235-0[pii]PubMedGoogle Scholar
  101. Portereiko MF, Saam J, Mango SE (2004) ZEN-4/MKLP1 is required to polarize the foregut ­epithelium. Curr Biol 14(11):932–941. doi:10.1016/j.cub.2004.05.052 S0960982204003872[pii]PubMedGoogle Scholar
  102. Putiri E, Zannoni S, Kadandale P, Singson A (2004) Functional domains and temperature-sensitive mutations in SPE-9, an EGF repeat-containing protein required for fertility in Caenorhabditis elegans. Dev Biol 272(2):448–459. doi:10.1016/j.ydbio.2004.05.014 S0012160604003586[pii]PubMedGoogle Scholar
  103. Quintin S, Mains PE, Zinke A, Hyman AA (2003) The mbk-2 kinase is required for inactivation of MEI-1/katanin in the one-cell Caenorhabditis elegans embryo. EMBO Rep 4(12):1175–1181. doi:10.1038/sj.embor.7400029 7400029[pii]PubMedGoogle Scholar
  104. Rappleye CA, Paredez AR, Smith CW, McDonald KL, Aroian RV (1999) The coronin-like protein POD-1 is required for anterior-posterior axis formation and cellular architecture in the nematode Caenorhabditis elegans. Genes Dev 13(21):2838–2851PubMedGoogle Scholar
  105. Rauh NR, Schmidt A, Bormann J, Nigg EA, Mayer TU (2005) Calcium triggers exit from meiosis II by targeting the APC/C inhibitor XErp1 for degradation. Nature 437(7061):1048–1052. doi:nature04093[pii]10.1038/nature04093PubMedGoogle Scholar
  106. Roberts TM, Stewart M (2000) Acting like actin. The dynamics of the nematode major sperm protein (msp) cytoskeleton indicate a push-pull mechanism for amoeboid cell motility. J Cell Biol 149(1):7–12PubMedGoogle Scholar
  107. Roberts TM, Streitmatter G (1984) Membrane-substrate contact under the spermatozoon of Caenorhabditis elegans, a crawling cell that lacks filamentous actin. J Cell Sci 69:117–126PubMedGoogle Scholar
  108. Roberts TM, Ward S (1982) Centripetal flow of pseudopodial surface components could propel the amoeboid movement of Caenorhabditis elegans spermatozoa. J Cell Biol 92(1):132–138PubMedGoogle Scholar
  109. Robertson S, Lin R (2012) The oocyte-to-embryo transition. Advances in Experimental Medicine and Biology, 757:351–372. (Chap. 12, this volume) Springer, New YorkGoogle Scholar
  110. Samuel AD, Murthy VN, Hengartner MO (2001) Calcium dynamics during fertilization in C. elegans. BMC Dev Biol 1:8PubMedGoogle Scholar
  111. Sato M, Sato K (2011) Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science. doi:science.1210333[pii]10.1126/science.1210333Google Scholar
  112. Sato M, Grant BD, Harada A, Sato K (2008) Rab11 is required for synchronous secretion of chondroitin proteoglycans after fertilization in Caenorhabditis elegans. J Cell Sci 121(Pt 19):3177–3186. doi:jcs.034678[pii]10.1242/jcs.034678Google Scholar
  113. Schubert CM, Lin R, de Vries CJ, Plasterk RH, Priess JR (2000) MEX-5 and MEX-6 function to establish soma/germline asymmetry in early C. elegans embryos. Mol Cell 5(4):671–682. doi:S1097-2765(00)80246-4[pii]Google Scholar
  114. Seidel HS, Rockman MV, Kruglyak L (2008) Widespread genetic incompatibility in C. elegans maintained by balancing selection. Science 319(5863):589–594. doi:1151107[pii]10.1126/science.1151107PubMedGoogle Scholar
  115. Seidel HS, Ailion M, Li J, van Oudenaarden A, Rockman MV, Kruglyak L (2011) A novel sperm-delivered toxin causes late-stage embryo lethality and transmission ratio distortion in C. elegans. PLoS Biol 9(7):e1001115. doi:10.1371/journal.pbio.1001115 PBIOLOGY-D-10-00587[pii]Google Scholar
  116. Shakes DC, Ward S (1989) Initiation of spermiogenesis in C. elegans: a pharmacological and genetic analysis. Dev Biol 134(1):189–200. doi:0012-1606(89)90088-2[pii]Google Scholar
  117. Shakes DC, Allen AK, Albert KM, Golden A (2011) emb-1 encodes the APC16 subunit of the Caenorhabditis elegans anaphase-promoting complex. Genetics 189(2):549–560. doi:genetics.111.131714[pii]10.1534/genetics.111.131714PubMedGoogle Scholar
  118. Shimabukuro K, Noda N, Stewart M, Roberts TM (2011) Reconstitution of amoeboid motility in vitro identifies a motor-independent mechanism for cell body retraction. Curr Biol. doi:S0960-9822(11)00953-5[pii]10.1016/j.cub.2011.08.047Google Scholar
  119. Singaravelu G, Singson A (2011) New insights into the mechanism of fertilization in nematodes. Int Rev Cell Mol Biol 289:211–238. doi:B9780123860392000067[pii]10.1016/B978-0-12-386039-2.00006-7PubMedGoogle Scholar
  120. Singaravelu G, Chatterjee I, Rahimi S, Druzhinina MK, Kang L, Xu XZ, Singson A (2012) The sperm surface localization of the TRP-3/SPE-41 Ca(2+)-permeable channel depends on SPE-38 function in Caenorhabditis elegans. Dev Biol 365(2):376–383PubMedGoogle Scholar
  121. Singson A (2001) Every sperm is sacred: fertilization in Caenorhabditis elegans. Dev Biol 230(2):101–109. doi:10.1006/dbio.2000.0118 S0012-1606(00)90118-0[pii]PubMedGoogle Scholar
  122. Singson A, Mercer KB, L’Hernault SW (1998) The C. elegans spe-9 gene encodes a sperm transmembrane protein that contains EGF-like repeats and is required for fertilization. Cell 93(1):71–79. doi:S0092-8674(00)81147-2[pii]Google Scholar
  123. Singson A, Hang JS, Parry JM (2008) Genes required for the common miracle of fertilization in Caenorhabditis elegans. Int J Dev Biol 52(5–6):647–656. doi:072512as[pii]10.1387/ijdb.072512asPubMedGoogle Scholar
  124. Siomos MF, Badrinath A, Pasierbek P, Livingstone D, White J, Glotzer M, Nasmyth K (2001) Separase is required for chromosome segregation during meiosis I in Caenorhabditis elegans. Curr Biol 11(23):1825–1835. doi:S0960-9822(01)00588-7[pii]PubMedGoogle Scholar
  125. Smith H (2006) Sperm motility and MSP. WormBook:1–8. doi:10.1895/wormbook.1.68.1Google Scholar
  126. Soler DC, Kadunganattil S, Ramdas S, Myers K, Roca J, Slaughter T, Pilder SH, Vijayaraghavan S (2009) Expression of transgenic PPP1CC2 in the testis of Ppp 1 cc-null mice rescues spermatid viability and spermiation but does not restore normal sperm tail ultrastructure, sperm motility, or fertility. Biol Reprod 81(2):343–352. doi:biolreprod.109.076398[pii]10.1095/biolreprod.109.076398PubMedGoogle Scholar
  127. Stanfield GM, Villeneuve AM (2006) Regulation of sperm activation by SWM-1 is required for reproductive success of C. elegans males. Curr Biol 16(3):252–263. doi:S0960-9822(06)01024-4[pii]10.1016/j.cub.2005.12.041PubMedGoogle Scholar
  128. Stitzel ML, Seydoux G (2007) Regulation of the oocyte-to-zygote transition. Science 316(5823):407–408. doi:316/5823/407[pii]10.1126/science.1138236PubMedGoogle Scholar
  129. Stitzel ML, Pellettieri J, Seydoux G (2006) The C. elegans DYRK kinase MBK-2 marks oocyte proteins for degradation in response to meiotic maturation. Curr Biol 16(1):56–62. doi:S0960-9822(05)01473-9[pii]10.1016/j.cub.2005.11.063PubMedGoogle Scholar
  130. Stitzel ML, Cheng KC, Seydoux G (2007) Regulation of MBK-2/Dyrk kinase by dynamic cortical anchoring during the oocyte-to-zygote transition. Curr Biol 17(18):1545–1554. doi:S0960-9822(07)01905-7[pii]10.1016/j.cub.2007.08.049PubMedGoogle Scholar
  131. Sudhaus W, Kiontke K (2007) Comparison of the cryptic nematode species Caenorhabditis brenneri sp. n. and C. remanei (Nematoda: Rhabditidae) with stem species pattern of the Caenorhabditis Elegans group. Zootaxa 1456:45–62Google Scholar
  132. Sudhaus S, Fricke B, Schneider S, Stachon A, Klein H, von During M, Hasenbring M (2007) [The cortisol awakening response in patients with acute and chronic low back pain. Relations with psychological risk factors of pain chronicity]. Schmerz 21(3):202–204, 206–211. doi:10.1007/s00482-006-0521-4Google Scholar
  133. Tunquist BJ, Schwab MS, Chen LG, Maller JL (2002) The spindle checkpoint kinase bub1 and cyclin e/cdk2 both contribute to the establishment of meiotic metaphase arrest by cytostatic factor. Curr Biol 12(12):1027–1033. doi:S0960982202008941[pii]PubMedGoogle Scholar
  134. Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A, Mizushima N (2008) Autophagy is essential for preimplantation development of mouse embryos. Science 321(5885):117–120. doi:321/5885/117[pii]10.1126/science.1154822PubMedGoogle Scholar
  135. Varkey JP, Jansma PL, Minniti AN, Ward S (1993) The Caenorhabditis elegans spe-6 gene is required for major sperm protein assembly and shows second site non-complementation with an unlinked deficiency. Genetics 133(1):79–86PubMedGoogle Scholar
  136. Varmuza S, Jurisicova A, Okano K, Hudson J, Boekelheide K, Shipp EB (1999) Spermiogenesis is impaired in mice bearing a targeted mutation in the protein phosphatase 1cgamma gene. Dev Biol 205(1):98–110. doi:S0012-1606(98)99100-X[pii]10.1006/dbio.1998.9100PubMedGoogle Scholar
  137. Veronico P, Gray LJ, Jones JT, Bazzicalupo P, Arbucci S, Cortese MR, Di Vito M, De Giorgi C (2001) Nematode chitin synthases: gene structure, expression and function in Caenorhabditis elegans and the plant parasitic nematode Meloidogyne artiellia. Mol Genet Genomics 266(1):28–34PubMedGoogle Scholar
  138. Wallenfang MR, Seydoux G (2000) Polarization of the anterior-posterior axis of C. elegans is a microtubule-directed process. Nature 408(6808):89–92. doi:10.1038/35040562PubMedGoogle Scholar
  139. Wang T, Jiao Y, Montell C (2005) Dissecting independent channel and scaffolding roles of the Drosophila transient receptor potential channel. J Cell Biol 171(4):685–694. doi:jcb.200508030[pii]10.1083/jcb.200508030PubMedGoogle Scholar
  140. Ward S, Carrel JS (1979) Fertilization and sperm competition in the nematode Caenorhabditis elegans. Dev Biol 73(2):304–321PubMedGoogle Scholar
  141. Ward S, Hogan E, Nelson GA (1983) The initiation of spermiogenesis in the nematode Caenorhabditis elegans. Dev Biol 98(1):70–79. doi:0012-1606(83)90336-6[pii]PubMedGoogle Scholar
  142. Watts JL, Browse J (2002) Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans. Proc Natl Acad Sci USA 99(9):5854–5859. doi:10.1073/pnas.092064799 092064799[pii]PubMedGoogle Scholar
  143. Wessel GM, Brooks JM, Green E, Haley S, Voronina E, Wong J, Zaydfudim V, Conner S (2001) The biology of cortical granules. Int Rev Cytol 209:117–206PubMedGoogle Scholar
  144. Wilson LD, Sackett JM, Mieczkowski BD, Richie AL, Thoemke K, Rumbley JN, Kroft TL (2011) Fertilization in C. elegans requires an intact C-terminal RING finger in sperm protein SPE-42. BMC Dev Biol 11:10. doi:1471-213X-11-10[pii]10.1186/1471-213X-11-10PubMedGoogle Scholar
  145. Wu JC, Go AC, Samson M, Cintra T, Mirsoian S, Wu TF, Jow MM, Routman EJ, Chu DS (2011) PP1 phosphatases regulate multiple stages of sperm development and motility in Caenorhabditis elegans. Genetics. doi:genetics.111.135376[pii]10.1534/genetics.111.135376Google Scholar
  146. Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9(10):1102–1109. doi:ncb1007-1102[pii]10.1038/ncb1007-1102PubMedGoogle Scholar
  147. Xu XZ, Sternberg PW (2003) A C. elegans sperm TRP protein required for sperm-egg interactions during fertilization. Cell 114(3):285–297. doi:S0092867403005658[pii]Google Scholar
  148. Yamamoto I, Kosinski ME, Greenstein D (2006) Start me up: cell signaling and the journey from oocyte to embryo in C. elegans. Dev Dyn 235(3):571–585. doi:10.1002/dvdy.20662PubMedGoogle Scholar
  149. Yi K, Buttery SM, Stewart M, Roberts TM (2007) A Ser/Thr kinase required for membrane-associated assembly of the major sperm protein motility apparatus in the amoeboid sperm of Ascaris. Mol Biol Cell 18(5):1816–1825. doi:E06-08-0741[pii]10.1091/mbc.E06-08-0741PubMedGoogle Scholar
  150. Yi K, Wang X, Emmett MR, Marshall AG, Stewart M, Roberts TM (2009) Dephosphorylation of major sperm protein (MSP) fiber protein 3 by protein phosphatase 2A during cell body retraction in the MSP-based amoeboid motility of Ascaris sperm. Mol Biol Cell 20(14):3200–3208. doi:E09-03-0240[pii]10.1091/mbc.E09-03-0240PubMedGoogle Scholar
  151. Zanetti S, Puoti A (2012) Sex determination in the C. elegans germline. Advances in Experimental Medicine and Biology 757:41–69. (Chap. 3, this volume) Springer, New YorkGoogle Scholar
  152. Zannoni S, L’Hernault SW, Singson AW (2003) Dynamic localization of SPE-9 in sperm: a protein required for sperm-oocyte interactions in Caenorhabditis elegans. BMC Dev Biol 3:10. doi:10.1186/1471-213X-3-10 1471-213X-3-10[pii]PubMedGoogle Scholar
  153. Zhang Y, Foster JM, Nelson LS, Ma D, Carlow CK (2005) The chitin synthase genes chs-1 and chs-2 are essential for C. elegans development and responsible for chitin deposition in the eggshell and pharynx, respectively. Dev Biol 285(2):330–339. doi:S0012-1606(05)00443-4[pii]10.1016/j.ydbio.2005.06.037PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Matthew R. Marcello
    • 1
    • 2
    • 3
  • Gunasekaran Singaravelu
    • 1
    • 2
  • Andrew Singson
    • 1
    • 2
  1. 1.Waksman InstitutePiscatawayUSA
  2. 2.Department of GeneticsRutgers UniversityPiscatawayUSA
  3. 3.Department of Molecular Genetics, Microbiology and ImmunologyUMDNJ-Robert Wood Johnson Medical SchoolPiscatawayUSA

Personalised recommendations