Modeling Single Cells in Systems Biology

  • Nicolai Fricker
  • Inna N. LavrikEmail author


One of the most powerful methods to study the dynamic behavior of protein networks is a single-cell analysis. Introduction of fluorescent proteins provided phenomenal approach to follow living cells in the spatiotemporal manner. In this chapter we shall discuss major principles and tools used in single-cell analysis of apoptotic cells. To understand why single-cell analysis is so important, we shall compare advantages and disadvantages of single-cell versus bulk measurements. Furthermore, we shall discuss the models based on the live cell imaging and information that can be obtained with these models. In particular, we shall focus on the studies devoted to the dynamics of caspase activation and mitochondrial outer membrane permeabilization.


Protein Amount Live Cell Imaging Nuclear Export Signal Mitochondrial Outer Membrane Permeabilization Bulk Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We acknowledge the Helmholtz Alliance on Systems Biology (NW1SBCancer) and Helmholtz-Russia Joint Research Groups-2008-2 for supporting our work.


  1. Albeck JG, Burke JM, Aldridge BB et al (2008a) Quantitative analysis of pathways controlling extrinsic apoptosis in single cells. Mol Cell 30:11–25. doi: 10.1016/j.molcel.2008.02.012 PubMedCrossRefGoogle Scholar
  2. Albeck JG, Burke JM, Spencer SL et al (2008b) Modeling a snap-action, variable-delay switch controlling extrinsic cell death. PLoS Biol 6:2831–2852. doi: 10.1371/journal.pbio.0060299 PubMedCrossRefGoogle Scholar
  3. Bentele M, Lavrik I, Ulrich M et al (2004) Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis. J Cell Biol 166:839–851. doi: 10.1083/jcb.200404158 PubMedCrossRefGoogle Scholar
  4. Fricker N, Beaudouin J, Richter P et al (2010) Model-based dissection of CD95 signaling dynamics reveals both a pro- and antiapoptotic role of c-FLIPL. J Cell Biol 190:377–389. doi: 10.1083/jcb.201002060 PubMedCrossRefGoogle Scholar
  5. Goldstein JC, Waterhouse NJ, Juin P et al (2000) The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol 2:156–162. doi: 10.1038/35004029 PubMedCrossRefGoogle Scholar
  6. Loewer A, Batchelor E, Gaglia G, Lahav G (2010) Basal dynamics of p53 reveal transcriptionally attenuated pulses in cycling cells. Cell 142:89–100. doi: 10.1016/j.cell.2010.05.031 PubMedCrossRefGoogle Scholar
  7. Neumann L, Pforr C, Beaudouin J et al (2010) Dynamics within the CD95 death-inducing signaling complex decide life and death of cells. Mol Syst Biol 6:352. doi: 10.1038/msb.2010.6 PubMedCrossRefGoogle Scholar
  8. Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135:216–26. doi: 10.1016/j.cell.2008.09.050 PubMedCrossRefGoogle Scholar
  9. Rehm M, Dussmann H, Janicke RU et al (2002) Single-cell fluorescence resonance energy transfer analysis demonstrates that caspase activation during apoptosis is a rapid process. Role of caspase-3. J Biol Chem 277:24506–24514. doi: 10.1074/jbc.M110789200 PubMedCrossRefGoogle Scholar
  10. Rehm M, Huber HJ, Dussmann H, Prehn JHM (2006) Systems analysis of effector caspase activation and its control by X-linked inhibitor of apoptosis protein. EMBO J 25:4338–4349. doi: 10.1038/sj.emboj.7601295 PubMedCrossRefGoogle Scholar
  11. Schilling M, Maiwald T, Bohl S et al (2005) Computational processing and error reduction strategies for standardized quantitative data in biological networks. FEBS J 272:6400. doi: 10.1111/j.1742-4658.2005.05037
  12. Spencer SL, Sorger PK (2011) Measuring and modeling apoptosis in single cells. Cell 144:926–39. doi: 10.1016/j.cell.2011.03.002 PubMedCrossRefGoogle Scholar
  13. Spencer SL, Gaudet S, Albeck JG et al (2009) Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459:428–32. doi: 10.1038/nature08012 PubMedCrossRefGoogle Scholar
  14. Tyas L, Brophy VA, Pope A et al (2000) Rapid caspase-3 activation during apoptosis revealed using fluorescence-resonance energy transfer. EMBO Rep 1:266–270. doi: 10.1093/embo-reports/kvd050 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Institute of Bioinformatics and Systems BiologyHelmholtz Zentrum MünchenNeuherbergGermany
  2. 2.Division of ImmunogeneticsGerman Cancer Research Center (DKFZ)HeidelbergGermany
  3. 3.BioquantHeidelbergGermany
  4. 4.Department of Translational Inflammation Research, Institute of Experimental Internal MedicineOtto von Guericke UniversityMagdeburgGermany

Personalised recommendations