Skip to main content

Modeling Formalisms in Systems Biology of Apoptosis

  • Chapter
  • First Online:
Systems Biology of Apoptosis

Abstract

Apoptosis is a form of cellular suicide central to various aspects in biology including tissue homeostasis, embryonic development, carcinogenesis, and neurodegenerative disorders. Quantitative modeling approaches provided valuable insights into the digital and irreversible nature of apoptosis initiation. In this chapter, we summarize the mathematical formalisms used in systems biology of apoptosis. In addition, we give an overview of apoptosis-related research questions that can be addressed by modeling. Moreover, we review top-down and bottom-up modeling approaches applied to apoptosis, and particularly focus on ordinary differential equation (ODE) modeling. Basic concepts such as bistability and sensitivity analysis are introduced, and a review of apoptosis-related ODE models is provided. We describe bistability, temporal switching, crosstalk between death and survival, and also discuss approaches to model cell-to-cell variability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albeck JG, Burke JM, Aldridge BB et al (2008a) Quantitative analysis of pathways controlling extrinsic apoptosis in single cells. Mol Cell 30:11–25. doi:10.1016/j.molcel.2008.02.012

    Article  PubMed  CAS  Google Scholar 

  • Albeck JG, Burke JM, Spencer SL et al (2008b) Modeling a snap-action, variable-delay switch controlling extrinsic cell death. PLoS Biol 6:2831–2852. doi:10.1371/journal.pbio.0060299

    Article  PubMed  CAS  Google Scholar 

  • Aldridge BB, Haller G, Sorger PK, Lauffenburger DA (2006) Direct Lyapunov exponent analysis enables parametric study of transient signalling governing cell behaviour. Syst Biol 153:425–432

    Article  CAS  Google Scholar 

  • Bagci EZ, Vodovotz Y, Billiar TR et al (2006) Bistability in apoptosis: roles of bax, bcl-2, and mitochondrial permeability transition pores. Biophys J 90:1546–1559. doi:10.1529/biophysj.105.068122

    Article  PubMed  CAS  Google Scholar 

  • Bagci EZ, Vodovotz Y, Billiar TR et al (2008) Computational insights on the competing effects of nitric oxide in regulating apoptosis. PLoS One 3:e2249. doi:10.1371/journal.pone.0002249

    Article  PubMed  Google Scholar 

  • Bentele M, Lavrik I, Ulrich M et al (2004) Mathematical modeling reveals threshold mechanism in CD95-induced apoptosis. J Cell Biol 166:839–851. doi:10.1083/jcb.200404158

    Article  PubMed  CAS  Google Scholar 

  • Breiman L, Friedman J, Stone CJ, Olshen RA (1984) Classification and regression trees (new edition). CRC, Boca Raton

    Google Scholar 

  • Brunelle JK, Letai A (2009) Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 122:437–441. doi:10.1242/jcs.031682

    Article  PubMed  CAS  Google Scholar 

  • Calzone L, Tournier L, Fourquet S et al (2010) Mathematical modelling of cell-fate decision in response to death receptor engagement. PLoS Comput Biol 6:e1000702. doi:10.1371/journal.pcbi.1000702

    Article  PubMed  Google Scholar 

  • Certo M, Del Gaizo MV, Nishino M et al (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9:351–365. doi:10.1016/j.ccr.2006.03.027

    Article  PubMed  CAS  Google Scholar 

  • Chaves M, Eissing T, Allgöwer F (2008) Bistable biological systems: a characterization through local compact input-to-state stability. IEEE Trans Automat Contr 53:87–100

    Article  Google Scholar 

  • Chen C, Cui J, Lu H et al (2007a) Modeling of the role of a Bax-activation switch in the mitochondrial apoptosis decision. Biophys J 92:4304–4315. doi:10.1529/biophysj.106.099606

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Cui J, Zhang W, Shen P (2007b) Robustness analysis identifies the plausible model of the Bcl-2 apoptotic switch. FEBS Lett 581:5143–5150. doi:10.1016/j.febslet.2007.09.063

    Article  PubMed  CAS  Google Scholar 

  • Chonghaile TN, Letai A (2008) Mimicking the BH3 domain to kill cancer cells. Oncogene 27(Suppl 1):S149–S157. doi:10.1038/onc.2009.52

    Article  CAS  Google Scholar 

  • Cui J, Chen C, Lu H et al (2008) Two independent positive feedbacks and bistability in the Bcl-2 apoptotic switch. PLoS One 3:e1469. doi:10.1371/journal.pone.0001469

    Article  PubMed  Google Scholar 

  • Deng J, Carlson N, Takeyama K et al (2007) BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell 12:171–185. doi:10.1016/j.ccr.2007.07.001

    Article  PubMed  CAS  Google Scholar 

  • Dumitru CA, Gulbins E (2006) TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis. Oncogene 25:5612–5625. doi:10.1038/sj.onc.1209568

    Article  PubMed  CAS  Google Scholar 

  • Düssmann H, Rehm M, Concannon CG et al (2010) Single-cell quantification of Bax activation and mathematical modelling suggest pore formation on minimal mitochondrial Bax accumulation. Cell Death Differ 17:278–290. doi:10.1038/cdd.2009.123

    Article  PubMed  Google Scholar 

  • Eissing T, Conzelmann H, Gilles ED et al (2004) Bistability analyses of a caspase activation model for receptor-induced apoptosis. J Biol Chem 279:36892–36897. doi:10.1074/jbc.M404893200

    Article  PubMed  CAS  Google Scholar 

  • Ferrell JE Jr (1996) Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem Sci 21:460–466

    Article  PubMed  CAS  Google Scholar 

  • Fischer SF, Vier J, Kirschnek S et al (2004) Chlamydia inhibit host cell apoptosis by degradation of proapoptotic BH3-only proteins. J Exp Med 200:905–916. doi:10.1084/jem.20040402

    Article  PubMed  CAS  Google Scholar 

  • Fricker N, Beaudouin J, Richter P et al (2010) Model-based dissection of CD95 signaling dynamics reveals both a pro- and antiapoptotic role of c-FLIPL. J Cell Biol 190:377–389. doi:10.1083/jcb.201002060

    Article  PubMed  CAS  Google Scholar 

  • Fussenegger M, Bailey JE, Varner J (2000) A mathematical model of caspase function in apoptosis. Nat Biotechnol 18:768–774. doi:10.1038/77589

    Article  PubMed  CAS  Google Scholar 

  • Goldstein JC, Waterhouse NJ, Juin P et al (2000) The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol 2:156–162. doi:10.1038/35004029

    Article  PubMed  CAS  Google Scholar 

  • Golks A, Brenner D, Fritsch C et al (2005) c-FLIPR, a new regulator of death receptor-induced apoptosis. J Biol Chem 280:14507–14513. doi:10.1074/jbc.M414425200

    Article  PubMed  CAS  Google Scholar 

  • Gómez-Benito M, Marzo I, Anel A, Naval J (2005) Farnesyltransferase inhibitor BMS-214662 induces apoptosis in myeloma cells through PUMA up-regulation, Bax and Bak activation, and Mcl-1 elimination. Mol Pharmacol 67:1991–1998. doi:10.1124/mol.104.007021

    Article  PubMed  Google Scholar 

  • Harrington HA, Ho KL, Ghosh S, Tung KC (2008) Construction and analysis of a modular model of caspase activation in apoptosis. Theor Biol Med Model 5:26. doi:10.1186/1742-4682-5-26

    Article  PubMed  Google Scholar 

  • Hasenauer J, Waldherr S, Doszczak M et al (2011) Identification of models of heterogeneous cell populations from population snapshot data. BMC Bioinformatics 12:125. doi:10.1186/1471-2105-12-125

    Article  PubMed  Google Scholar 

  • Ho KL, Harrington HA (2010) Bistability in apoptosis by receptor clustering. PLoS Comput Biol 6:e1000956. doi:10.1371/journal.pcbi.1000956

    Article  PubMed  Google Scholar 

  • Hoffmann JC, Pappa A, Krammer PH, Lavrik IN (2009) A new C-terminal cleavage product of procaspase-8, p30, defines an alternative pathway of procaspase-8 activation. Mol Cell Biol 29:4431–4440. doi:10.1128/MCB.02261-07

    Article  PubMed  CAS  Google Scholar 

  • Hu T-M, Hayton WL, Mallery SR (2006) Kinetic modeling of nitric-oxide-associated reaction network. Pharm Res 23:1702–1711. doi:10.1007/s11095-006-9031-4

    Article  PubMed  CAS  Google Scholar 

  • Hua F, Cornejo MG, Cardone MH et al (2005) Effects of Bcl-2 levels on Fas signaling-induced caspase-3 activation: molecular genetic tests of computational model predictions. J Immunol 175:985–995

    PubMed  CAS  Google Scholar 

  • Hua F, Hautaniemi S, Yokoo R, Lauffenburger DA (2006) Integrated mechanistic and data-driven modelling for multivariate analysis of signalling pathways. J R Soc Interface 3:515–526. doi:10.1098/rsif.2005.0109

    Article  PubMed  Google Scholar 

  • Hughes MA, Harper N, Butterworth M et al (2009) Reconstitution of the death-inducing signaling complex reveals a substrate switch that determines CD95-mediated death or survival. Mol Cell 35:265–279. doi:10.1016/j.molcel.2009.06.012

    Article  PubMed  CAS  Google Scholar 

  • Janes KA, Albeck JG, Gaudet S et al (2005) A systems model of signaling identifies a molecular basis set for cytokine-induced apoptosis. Science 310:1646–1653. doi:10.1126/science.1116598

    Article  PubMed  CAS  Google Scholar 

  • Janes KA, Gaudet S, Albeck JG et al (2006) The response of human epithelial cells to TNF involves an inducible autocrine cascade. Cell 124:1225–1239. doi:10.1016/j.cell.2006.01.041

    Article  PubMed  CAS  Google Scholar 

  • Krueger A, Schmitz I, Baumann S et al (2001) Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem 276:20633–20640. doi:10.1074/jbc.M101780200

    Article  PubMed  CAS  Google Scholar 

  • Legewie S, Blüthgen N, Herzel H (2006) Mathematical modeling identifies inhibitors of apoptosis as mediators of positive feedback and bistability. PLoS Comput Biol 2:e120. doi:10.1371/journal.pcbi.0020120

    Article  PubMed  Google Scholar 

  • Levenberg K (1944) A method for the solution of certain problems in least squares. Quart Appl Math 2:164–168

    Google Scholar 

  • Li B, Dou QP (2000) Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc Natl Acad Sci USA 97:3850–3855. doi:10.1073/pnas.070047997

    Article  PubMed  CAS  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I et al (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  PubMed  CAS  Google Scholar 

  • Mai Z, Liu H (2009) Boolean network-based analysis of the apoptosis network: irreversible apoptosis and stable surviving. J Theor Biol 259:760–769. doi:10.1016/j.jtbi.2009.04.024

    Article  PubMed  Google Scholar 

  • Mannick JB, Hausladen A, Liu L et al (1999) Fas-induced caspase denitrosylation. Science 284:651–654

    Article  PubMed  CAS  Google Scholar 

  • Marquardt D (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11:431–441

    Article  Google Scholar 

  • McDonald ER 3rd, El-Deiry WS (2004) Suppression of caspase-8- and -10-associated RING proteins results in sensitization to death ligands and inhibition of tumor cell growth. Proc Natl Acad Sci USA 101:6170–6175. doi:10.1073/pnas.0307459101

    Article  PubMed  CAS  Google Scholar 

  • Nair VD, Yuen T, Olanow CW, Sealfon SC (2004) Early single cell bifurcation of pro- and antiapoptotic states during oxidative stress. J Biol Chem 279:27494–27501. doi:10.1074/jbc.M312135200

    Article  PubMed  CAS  Google Scholar 

  • Neumann L, Pforr C, Beaudouin J et al (2010) Dynamics within the CD95 death-inducing signaling complex decide life and death of cells. Mol Syst Biol 6:352. doi:10.1038/msb.2010.6

    Article  PubMed  Google Scholar 

  • Okazaki N, Asano R, Kinoshita T, Chuman H (2008) Simple computational models of type I/type II cells in Fas signaling-induced apoptosis. J Theor Biol 250:621–633. doi:10.1016/j.jtbi.2007.10.030

    Article  PubMed  CAS  Google Scholar 

  • Pace V, Bellizzi D, Giordano F et al (2010) Experimental testing of a mathematical model relevant to the extrinsic pathway of apoptosis. Cell Stress Chaperones 15:13–23. doi:10.1007/s12192-009-0118-9

    Article  PubMed  Google Scholar 

  • Pfeuty B, David-Pfeuty T, Kaneko K (2008) Underlying principles of cell fate determination during G1 phase of the mammalian cell cycle. Cell Cycle 7:3246–3257

    Article  PubMed  CAS  Google Scholar 

  • Philippi N, Walter D, Schlatter R et al (2009) Modeling system states in liver cells: survival, apoptosis and their modifications in response to viral infection. BMC Syst Biol 3:97. doi:10.1186/1752-0509-3-97

    Article  PubMed  Google Scholar 

  • Pop C, Fitzgerald P, Green DR, Salvesen GS (2007) Role of proteolysis in caspase-8 activation and stabilization. Biochemistry 46:4398–4407. doi:10.1021/bi602623b

    Article  PubMed  CAS  Google Scholar 

  • Press WH, Vetterling WT, Teukolsky SA, Flannery BP (1992) Modeling of data, chap 15, 2nd edn, Numerical recipes in C. Cambridge University Press, New York, pp 662–666

    Google Scholar 

  • Raue A, Kreutz C, Maiwald T et al (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25:1923–1929. doi:10.1093/bioinformatics/btp358

    Article  PubMed  CAS  Google Scholar 

  • Raue A, Becker V, Klingmüller U, Timmer J (2010) Identifiability and observability analysis for experimental design in nonlinear dynamical models. Chaos 20:045105. doi:10.1063/1.3528102

    Article  PubMed  CAS  Google Scholar 

  • Reed JC (1999) Dysregulation of apoptosis in cancer. J Clin Oncol 17:2941–2953

    PubMed  CAS  Google Scholar 

  • Reed JC, Miyashita T, Takayama S et al (1996) BCL-2 family proteins: regulators of cell death involved in the pathogenesis of cancer and resistance to therapy. J Cell Biochem 60:23–32. doi:10.1002/(SICI)1097-4644(19960101)60:1<23::AID-JCB5>3.0.CO;2-5

    Article  PubMed  CAS  Google Scholar 

  • Rehm M, Dussmann H, Janicke RU et al (2002) Single-cell fluorescence resonance energy transfer analysis demonstrates that caspase activation during apoptosis is a rapid process. Role of caspase-3. J Biol Chem 277:24506–24514. doi:10.1074/jbc.M110789200

    Article  PubMed  CAS  Google Scholar 

  • Rehm M, Huber HJ, Dussmann H, Prehn JHM (2006) Systems analysis of effector caspase activation and its control by X-linked inhibitor of apoptosis protein. EMBO J 25:4338–4349. doi:10.1038/sj.emboj.7601295

    Article  PubMed  CAS  Google Scholar 

  • Rehm M, Huber HJ, Hellwig CT et al (2009) Dynamics of outer mitochondrial membrane permeabilization during apoptosis. Cell Death Differ 16:613–623. doi:10.1038/cdd.2008.187

    Article  PubMed  CAS  Google Scholar 

  • Rössig L, Fichtlscherer B, Breitschopf K et al (1999) Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. J Biol Chem 274:6823–6826

    Article  PubMed  Google Scholar 

  • Scaffidi C, Schmitz I, Krammer PH, Peter ME (1999) The role of c-FLIP in modulation of CD95-induced apoptosis. J Biol Chem 274:1541–1548

    Article  PubMed  CAS  Google Scholar 

  • Schimmer AD (2004) Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res 64:7183–7190. doi:10.1158/0008-5472.CAN-04-1918

    Article  PubMed  CAS  Google Scholar 

  • Schlatter R, Schmich K, Avalos Vizcarra I et al (2009) ON/OFF and beyond–a boolean model of apoptosis. PLoS Comput Biol 5:e1000595. doi:10.1371/journal.pcbi.1000595

    Article  PubMed  Google Scholar 

  • Schorr K, Li M, Krajewski S et al (1999) Bcl-2 gene family and related proteins in mammary gland involution and breast cancer. J Mammary Gland Biol Neoplasia 4:153–164

    Article  PubMed  CAS  Google Scholar 

  • Scott FL, Stec B, Pop C et al (2009) The Fas-FADD death domain complex structure unravels signalling by receptor clustering. Nature 457:1019–1022. doi:10.1038/nature07606

    Article  PubMed  CAS  Google Scholar 

  • Siehs C, Oberbauer R, Mayer G et al (2002) Discrete simulation of regulatory homo- and heterodimerization in the apoptosis effector phase. Bioinformatics 18:67–76

    Article  PubMed  CAS  Google Scholar 

  • Song Z, Yao X, Wu M (2003) Direct interaction between survivin and Smac/DIABLO is essential for the anti-apoptotic activity of survivin during taxol-induced apoptosis. J Biol Chem 278:23130–23140. doi:10.1074/jbc.M300957200

    Article  PubMed  CAS  Google Scholar 

  • Spencer SL, Gaudet S, Albeck JG et al (2009) Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459:428–432. doi:10.1038/nature08012

    Article  PubMed  CAS  Google Scholar 

  • Stennicke HR, Jürgensmeier JM, Shin H et al (1998) Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem 273:27084–27090

    Article  PubMed  CAS  Google Scholar 

  • Stucki JW, Simon H-U (2005) Mathematical modeling of the regulation of caspase-3 activation and degradation. J Theor Biol 234:123–131. doi:10.1016/j.jtbi.2004.11.011

    Article  PubMed  CAS  Google Scholar 

  • Svingen PA, Loegering D, Rodriquez J et al (2004) Components of the cell death machine and drug sensitivity of the National Cancer Institute Cell Line Panel. Clin Cancer Res 10:6807–6820. doi:10.1158/1078-0432.CCR-0778-02

    Article  PubMed  CAS  Google Scholar 

  • Timmer J, Müller T, Swameye I et al (2004) Modeling the nonlinear dynamics of cellular signal transduction. Int J Bifurcat Chaos 14:2069–2079

    Article  CAS  Google Scholar 

  • Toivonen HT, Meinander A, Asaoka T et al (2011) Modeling reveals that dynamic regulation of c-FLIP levels determines cell-to-cell distribution of CD95-mediated apoptosis. J Biol Chem 286:18375–18382. doi:10.1074/jbc.M110.177097

    Article  PubMed  CAS  Google Scholar 

  • Tyas L, Brophy VA, Pope A et al (2000) Rapid caspase-3 activation during apoptosis revealed using fluorescence-resonance energy transfer. EMBO Rep 1:266–270. doi:10.1093/embo-reports/kvd050

    Article  PubMed  CAS  Google Scholar 

  • Vieira HL, Belzacq AS, Haouzi D et al (2001) The adenine nucleotide translocator: a target of nitric oxide, peroxynitrite, and 4-hydroxynonenal. Oncogene 20:4305–4316

    Article  PubMed  CAS  Google Scholar 

  • Vo T-T, Letai A (2010) BH3-only proteins and their effects on cancer. Adv Exp Med Biol 687:49–63

    Article  PubMed  CAS  Google Scholar 

  • Willis SN, Chen L, Dewson G et al (2005) Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19:1294–1305. doi:10.1101/gad.1304105

    Article  PubMed  CAS  Google Scholar 

  • Würstle ML, Laussmann MA, Rehm M (2010) The caspase-8 dimerization/dissociation balance is a highly potent regulator of caspase-8, -3, -6 signaling. J Biol Chem 285:33209–33218. doi:10.1074/jbc.M110.113860

    Article  PubMed  Google Scholar 

  • Zhang H, Xu Q, Krajewski S et al (2000) BAR: an apoptosis regulator at the intersection of caspases and Bcl-2 family proteins. Proc Natl Acad Sci USA 97:2597–2602

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Shah MV, Yang J et al (2008) Network model of survival signaling in large granular lymphocyte leukemia. Proc Natl Acad Sci USA 105:16308–16313. doi:10.1073/pnas.0806447105

    Article  PubMed  CAS  Google Scholar 

  • Zhang T, Brazhnik P, Tyson JJ (2009) Computational analysis of dynamical responses to the intrinsic pathway of programmed cell death. Biophys J 97:415–434. doi:10.1016/j.bpj.2009.04.053

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Legewie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kallenberger, S., Legewie, S. (2012). Modeling Formalisms in Systems Biology of Apoptosis. In: Lavrik, I. (eds) Systems Biology of Apoptosis. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4009-3_1

Download citation

Publish with us

Policies and ethics