Capybara pp 195-207 | Cite as

Capybara Social Behavior and Use of Space: Patterns and Processes

Chapter

Abstract

Among rodents, the group of caviomorphs (South American Hystricognaths; Vucetich et al. 2012) is usually considered atypical because of the peculiar adaptations of many species in this group, which contrast with features that come to mind when we think about “typical” rodents, such as rats, mice, or squirrels. Among the characteristics that make caviomorph rodents special is of course their large size: from pacas (Cuniculus paca, 7–12 kg) to coypus (Myocastor coypus5–9 kg) and capybaras (Hydrochoerus hydrochaeris, 50 kg), caviomorphs include the largest of all rodents. Additionally, caviomorphs show a number of unique (among rodents) adaptations and ecological niches, in some cases exhibiting striking convergences with ungulates from other continents (Eisenberg and Mckay 1974; Kleiman 1974), including almost all forms of social behavior and mating systems. Thus, for instance, there are monogamous caviomorphs such as the Patagonian maras (Dolichotis patagonum; Taber and Macdonald 1992) while cavies are clearly promiscuous (Caviasp.; Rood 1972; Schwarz-Weig and Sachser 1996). There are also highly social species such as the subterranean social tuco-tucos (Ctenomys sociabilis; Zenuto et al. 1999) and the capybaras.

References

  1. Aars J, Ims RA (2000) Population dynamic and genetic consequences of spatial density-dependent dispersal in patchy populations. Am Nat 155:252–265PubMedCrossRefGoogle Scholar
  2. Alho CJR, Rondon NL (1987) Habitat, population densities, and social structure of capybaras, (Hydrochaeris hydrochaeris, Rodentia) in the Pantanal, Brazil. Rev Bras Zool 4:139–149Google Scholar
  3. Alho CJR, Campos ZMS, Gonçalves HC (1987) Ecologia da capivara, (Hydrochaeris hydrochaeris, Rodentia) do Pantanal: I. Habitats, densidades e tamanho de grupo. Rev Bras Biol 47:87–97Google Scholar
  4. Azcárate T (1980) Sociobiología del capibara (Hydrochoerus hydrochaeris). Doñana Acta Vertebrat 7–6:1–228Google Scholar
  5. Barreto GR, Herrera EA (1998) Foraging patterns of capybaras in a seasonally flooded savanna in Venezuela. J Trop Ecol 14:87–98CrossRefGoogle Scholar
  6. Barreto GR, Quintana RD (2012) Foraging strategies and feeding habits of capybaras. In: Moreira JR, Ferraz KMPMB, Herrera EA, Macdonald DW (eds) Capybara: biology, use and conservation of an exceptional neotropical species. Springer, New York, pp 83–96Google Scholar
  7. Barros KS, Tokumaru RS, Pedroza JP, Nogueira SSC (2010) Vocal repertoire of captive capybara (Hydrochoerus hydrochaeris): structure, context and function. Ethology 116:1–11CrossRefGoogle Scholar
  8. Bedoya M (2007) Elección de pareja en hembras de Hydrochoerus hydrochaeris. Graduate ­dissertation, Universidad Simón Bolívar, CaracasGoogle Scholar
  9. Birkhead TR, Pizzari T (2002) Postcopulatory sexual selection. Nat Rev Genet 3:262–273PubMedCrossRefGoogle Scholar
  10. Borges PA, Domínguez MG, Herrera EA (1996) Digestive ecophysiology of capybaras. J Comp Physiol B 166:55–60CrossRefGoogle Scholar
  11. Clauss M, Hummel J (2005) The digestive performance of mammalian herbivores: why big may not be that much better. Mammal Rev 35:174–187CrossRefGoogle Scholar
  12. Clutton-Brock TH, Guinness FE, Albon SD (1982) Red deer. Chicago University Press, ChicagoGoogle Scholar
  13. Congdon ER (2007) Natal dispersal and new group formation in capybaras (Hydrochoerus hydrochaeris) in a seasonally flooded savanna of Venezuela. Ph.D. thesis, University of Missouri at Saint Louis, Saint LouisGoogle Scholar
  14. Dobson FS (2007) Gene dynamics and social behavior. In: Wolff JO, Sherman PW (eds) Rodent societies, an ecological and evolutionary approach. Chicago University Press, Chicago, pp 163–172Google Scholar
  15. Eisenberg JF, Mckay GM (1974) Comparison of ungulate adaptations in the new world and the old world tropical forests with special reference to Ceylon and the rainforests of Central America. In: Geist V, Walther F (eds) The behavior of ungulates and its relation to management. IUCN NS, Morges, pp 585–602Google Scholar
  16. Ferraz KMPMB, Izar P, Sato T, Nishida SM (2012) Social and spatial relationships of capybaras in a semi-confined production system. In: Moreira JR, Ferraz KMPMB, Herrera EA, Macdonald DW (eds) Capybara: biology, use and conservation of an exceptional neotropical species. Springer, New York, pp 243–260Google Scholar
  17. Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162CrossRefGoogle Scholar
  18. Hamilton WD (1963) The evolution of altruistic behavior. Am Nat 97:354–356CrossRefGoogle Scholar
  19. Hamilton WD (1971) Geometry for the selfish herd. J Theor Biol 31:295–311PubMedCrossRefGoogle Scholar
  20. Herrera EA (1985) Coprophagy in the capybara, Hydrochoerus hydrochaeris. J Zool (Lond) 207A:616–619Google Scholar
  21. Herrera EA (1986) The behavioural ecology of the capybara. D.Phil. thesis, University of Oxford, OxfordGoogle Scholar
  22. Herrera EA (1992a) Size of testes and scent glands in capybaras, Hydrochaeris hydrochaeris(Rodentia: Caviomorpha). J Mammal 73:871–875CrossRefGoogle Scholar
  23. Herrera EA (1992b) Growth and dispersal of capybaras, Hydrochaeris hydrochaeris, in the llanos of Venezuela. J Zool (Lond) 228:307–316CrossRefGoogle Scholar
  24. Herrera EA (2012) Capybara digestive adaptations. In: Moreira JR, Ferraz KMPMB, Herrera EA, Macdonald DW (eds) Capybara: biology, use and conservation of an exceptional neotropical species. Springer, New York, pp 97–106Google Scholar
  25. Herrera EA, Macdonald DW (1987) Group stability and the structure of a capybara population. Symp Zool Soc Lond 58:115–130Google Scholar
  26. Herrera EA, Macdonald DW (1989) Resource utilization and territoriality in group-living capybaras. J Anim Ecol 58:667–679CrossRefGoogle Scholar
  27. Herrera EA, Macdonald DW (1993) Aggression, dominance and mating success among capybara males. Behav Ecol 4:114–119CrossRefGoogle Scholar
  28. Herrera EA, Salas V, Congdon ERC, Corriale MJ, Tang-Martínez Z (2011) Capybara social structure and dispersal patterns: variations on a theme. J Mammal 92(1):12–20CrossRefGoogle Scholar
  29. Herrera EA, Macdonald DW (1993) Aggression, dominance and mating success among capybara males. Behav Ecol 4:114–119CrossRefGoogle Scholar
  30. Jorgenson JP (1986) Notes on the ecology and behavior of capybaras in northeastern Colombia. Vida Silvestre Neotrop 1:31–40Google Scholar
  31. Kleiman D (1974) Patterns of behaviour in hystricomorph rodents. Symp Zool Soc Lond 34:171–309Google Scholar
  32. Kokko H, Johnstone R (1999) Social queuing in animal societies: a dynamic model of reproductive skew. Proc Roy Soc Lond Ser B 266:571–578CrossRefGoogle Scholar
  33. Krebs JR, Davies NB (1993) Introduction to behavioural ecology. Blackwells, OxfordGoogle Scholar
  34. López M, Muñoz MG, Herrera EA (2008) Reproductive morphology of capybaras, Hydrochoerus hydrochaeris(Rodentia: Hystricognathi): no evidence for sperm competition? Mamm Biol 73:241–244CrossRefGoogle Scholar
  35. López-Barbella S (1982) Determinación del ciclo estral en chigüires, Hydrochoerus hydrochaeris. Acta Cient Venez 33:497–501PubMedGoogle Scholar
  36. Macdonald DW (1981a) Dwindling resources and the social behaviour of capybaras, Hydrochoerus hydrochaeris. J Zool (Lond) 194:371–391CrossRefGoogle Scholar
  37. Macdonald DW (1981b) Feeding associations between capybaras, Hydrochoerus hydrochaeris, and some bird species. Ibis 123:364–366CrossRefGoogle Scholar
  38. Macdonald DW (1983) The ecology of carnivore social behaviour. Nature 301:379–384CrossRefGoogle Scholar
  39. Macdonald DW, Herrera EA (2012) Capybara scent glands and scent-marking behavior. In: Moreira JR, Ferraz KMPMB, Herrera EA, Macdonald DW (eds) Capybara: biology, use and conservation of an exceptional neotropical species. Springer, New York, pp 185–193Google Scholar
  40. Macdonald DW, Krantz K, Aplin RT (1984) Behavioral, anatomical and chemical aspects of scent marking amongst capybaras (Hydrochoerus hydrochaeris) (Rodentia, Caviomorpha). J Zool 202:341–360CrossRefGoogle Scholar
  41. Moreira JR, Macdonald DW, Clarke JR (1997) Correlates of testis mass in capybaras (Hydrochoerus hydrochaeris), dominance assurance or sperm production? J Zool (Lond) 241:457–463CrossRefGoogle Scholar
  42. Nogueira SSC, Nogueira-Filho SLG, Otta E, Dias CTS, Carvalho A (1999) Determination of infanticide causes in capybara (Hydrochoerus hydrochaeris) groups in captivity. Appl Anim Behav Sci 62:351–357CrossRefGoogle Scholar
  43. Nogueira SSC, Otta E, Dos Santos Dias CT, Nogueira-Filho SLG (2000) Alloparental behavior in the capybara (Hydrochoerus hydrochaeris). Rev Etologia 2:17–21Google Scholar
  44. Nutt KJ (2005) Philopatry of both sexes leads to the formation of multimale, multifemale groups in Ctenodactylus gundi(Rodentia: Ctenodatylidae). J Mammal 86:961–968CrossRefGoogle Scholar
  45. Ojasti J (1973) Estudio Biológico del chigüire o capibara. FONAIAP, Caracas, p 270. Reprinted 2011, Editorial Equinoccio, USB, CaracasGoogle Scholar
  46. Ojasti J, Sosa Burgos L (1985) Density regulation in populations of capybara. Acta Zool Fennica 173:81–83Google Scholar
  47. Perea J, Ruíz S (1977) Organización social y hábitos territoriales del cacó. Graduate Dissertation, Biología Universidad Nacional, Santa Fé de Bogotá, p 109Google Scholar
  48. Pérez-González J, Carranza J (2009) Female-biased dispersal under conditions of low male competition in a polygynous mammal. Mol Ecol 18:4617–4630PubMedCrossRefGoogle Scholar
  49. Quintana RD, Rabinovich JE (1993) Assessment of capybara (Hydrochoerus hydrochaeris) populations in the wetlands of Corrientes, Argentina. Wetlands Ecol Manag 2:223–230CrossRefGoogle Scholar
  50. Rood JP (1972) Ecological and behavioral comparisons of three genera of Argentine cavies. Anim Behav Monogr 5:1–83Google Scholar
  51. Salas V (1999) Social organisation of capybaras in the Venezuelan Llanos. Ph.D. thesis, University of Cambridge, CambridgeGoogle Scholar
  52. Schaller GB, Crawshaw PG (1981) Social organization in a capybara population. Säugetierkd Mitt 29:3–16Google Scholar
  53. Schwarz-Weig E, Sachser N (1996) Social behaviour, mating system and testes size in cuis (Galea musteloides). Z Säugetierkd 61:25–38Google Scholar
  54. Soini P, Soini M (1992) Ecologia del ronsoco o capibara (Hydrochoerus hydrochaeris) en la reserva nacional Pacaya-Samiria, Peru. Folia Amazonica 4:135–150Google Scholar
  55. Taber AB, Macdonald DW (1992) Spatial organization and monogamy in the mara, Dolichotis patagonum. J Zool (Lond) 227:417–438CrossRefGoogle Scholar
  56. Vucetich MG, Deschamps CM, Pérez ME (2012) Paleontology, evolution and systematics of capybara. In: Moreira JR, Ferraz KMPMB, Herrera EA, Macdonald DW (eds) Capybara: biology, use and conservation of an exceptional neotropical species. Springer, New York, pp 39–59Google Scholar
  57. Yáber MC, Herrera EA (1994) Vigilance, group size and social status in capybaras. Anim Behav 48:1301–1307CrossRefGoogle Scholar
  58. Zenuto RR, Lacey EA, Busch C (1999) DNA fingerprinting reveals polygyny in the subterranean rodent Ctenomys talarum. Mol Ecol 8:1529–1532PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Departamento de Estudios AmbientalesUniversidad Simón BolívarCaracasVenezuela

Personalised recommendations