Dynamics, Control, and Stabilization of Turning Flight in Fruit Flies

  • Leif RistrophEmail author
  • Attila J. Bergou
  • Gordon J. Berman
  • John Guckenheimer
  • Z. Jane Wang
  • Itai Cohen
Conference paper
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 155)


Complex behaviors of flying insects require interactions among sensory-neural systems, wing actuation biomechanics, and flapping-wing aerodynamics. Here, we review our recent progress in understanding these layers for maneuvering and stabilization flight of fruit flies. Our approach combines kinematic data from flying insects and aerodynamic simulations to distill reduced-order mathematical models of flight dynamics, wing actuation mechanisms, and control and stabilization strategies. Our central findings include: (1) During in-flight turns, fruit flies generate torque by subtly modulating wing angle of attack, in effect paddling to push off the air; (2) These motions are generated by biasing the orientation of a biomechanical brake that tends to resist rotation of the wing; (3) A simple and fast sensory-neural feedback scheme determines this wing actuation and thus the paddling motions needed for stabilization of flight heading against external disturbances. These studies illustrate a powerful approach for studying the integration of sensory-neural feedback, actuation, and aerodynamic strategies used by flying insects.

Key words

Insect flight aerodynamics flight dynamics control stability 


  1. [1].
    Ristroph L, Berman GJ, Bergou AJ, Wang ZJ, Cohen I (2009) Automated hull reconstruction motion tracking (HRMT) applied to sideways maneuvers of free-flying insects. J Exp Biol 212:1324–1335CrossRefGoogle Scholar
  2. [2].
    Ristroph L, Bergou AJ, Ristroph G, Coumes K, Berman GJ, Guckenheimer J, Wang ZJ, Cohen I (2010) Discovering the flight autostabilizer of fruit flies by inducing aerial stumbles. PNAS 107:4820–4824CrossRefGoogle Scholar
  3. [3].
    Bergou AJ, Ristroph L, Guckenheimer J, Wang ZJ, Cohen I (2010) Fruit flies modulate passive wing pitching to generate in-flight turns. Phys Rev Lett 104:148101CrossRefGoogle Scholar
  4. [4].
    Collett TS, Land MF (1975) Visual control of flight behavior in the hoverfly, Syritta pipiens L. J Comp Physiol A 99:1–66CrossRefGoogle Scholar
  5. [5].
    Reichardt W, Poggio T (1976) Visual control of orientation behavior in the fly. Q Rev Biophys 9:311–375CrossRefGoogle Scholar
  6. [6].
    Mayer M, Vogtmann K, Bausenwein B, Wolf R, Heisenberg M (1988) Flight control during ‘free yaw turns’ in Drosophila melanogaster. J Comp Physiol A 163:389–399CrossRefGoogle Scholar
  7. [7].
    Heisenberg M, Wolf R (1993) The sensory-motor link in motion-dependent flight control of flies. In: Visual motion and its role in the stabilization of gaze. Elsevier, Amsterdam, pp 265–283Google Scholar
  8. [8].
    Heide G, Goetz KG (1996) Optomotor control of course and altitude in Drosophila is correlated with distinct activities of at least three pairs of steering muscles. J Exp Biol 199:1711–1726Google Scholar
  9. [9].
    Fry SN, Sayaman R, Dickinson MH (2003) The aerodynamics of free-flight maneuvers of Drosophila. Science 300:495–498CrossRefGoogle Scholar
  10. [10].
    Dickinson MH (2005) The initiation and control of rapid flight maneuvers in fruit flies. Integr Comp Biol 45:274–281CrossRefGoogle Scholar
  11. [11].
    Bender JA, Dickinson MH (2006) Visual stimulation of saccades in magnetically tethered Drosophila. J Exp Biol 209:3170–3182CrossRefGoogle Scholar
  12. [12].
    Hedrick TL, Cheng B, Deng X (2009) Wingbeat time and the scaling of passive rotational damping in flapping flight. Science 324:252–255CrossRefGoogle Scholar
  13. [13].
    Tammero LF, Dickinson MH (2002) The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. J Exp Biol 205:327–343Google Scholar
  14. [14].
    Dickinson MH, Tu MS (1997) The function of Dipteran flight muscle. Comp Biochem Physiol A 116:223–238CrossRefGoogle Scholar
  15. [15].
    Reiser MB, Dickinson MH (2008) A modular display system for insect behavioral response. J Neurosci Methods 167:127–139CrossRefGoogle Scholar
  16. [16].
    Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206:4191–4208CrossRefGoogle Scholar
  17. [17].
    Lehmann F-O (2004) The mechanisms of lift enhancement in insect flight. Naturwissenschaften 91:101–122CrossRefGoogle Scholar
  18. [18].
    Wang ZJ (2005) Dissecting insect flight. Annu Rev Fluid Mech 37:183–210CrossRefGoogle Scholar
  19. [19].
    Jensen M (1956) Biology and physics of locust flight. III. The aerodynamics of locust flight. Philos Trans R Soc Ser B 239:511–552Google Scholar
  20. [20].
    Ellington CP (1984) The aerodynamics of hovering insect flight. I. The quasi-steady analysis. Philos Trans R Soc Ser B 305:1–15Google Scholar
  21. [21].
    Bennett L (1970) Insect flight: lift and the rate of change of incidence. Science 167:177–179CrossRefGoogle Scholar
  22. [22].
    Dickinson MH, Lehmann F-O, Goetz KG (1993) The active control of wing rotation by Drosophila. J Exp Biol 182:173–189Google Scholar
  23. [23].
    Ellington CP, van den Berg C, Willmott AP, Thomas ALR (1996) Leading-edge vortices in insect flight. Nature 384:626–630CrossRefGoogle Scholar
  24. [24].
    Dickinson MH, Lehmann F-O, Sane S (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRefGoogle Scholar
  25. [25].
    Lentink D, Dickinson MH (2009) Rotational accelerations stabilize leading edge vortices on revolving fly wings. J Exp Biol 212:2705–2719CrossRefGoogle Scholar
  26. [26].
    Dickson WB, Polidoro P, Tanner MM, Dickinson MH (2010) A linear systems analysis of the yaw dynamics of a dynamically scaled insect model. J Exp Biol 213:3047–3061CrossRefGoogle Scholar
  27. [27].
    Sun M, Tang J (2002) Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J Exp Biol 205:55–70Google Scholar
  28. [28].
    Ramamurti R, Sandberg WC (2002) A three-dimensional computational study of the aerodynamic mechanisms of insect flight. J Exp Biol 205:1507–1518Google Scholar
  29. [29].
    Wang ZJ, Birch J, Dickinson MH (2004) Unsteady forces in hovering flight: computation vs experiments. J Exp Biol 207:449CrossRefGoogle Scholar
  30. [30].
    Pesavento U, Wang ZJ (2009) Flapping wing flight can save aerodynamic power compared to steady flight. Phys Rev Lett 103:118102CrossRefGoogle Scholar
  31. [31].
    Young J, Walker SM, Bomphrey RJ, Taylor GK, Thomas ALR (2009) Details of wing design and deformation enhance aerodynamic function and flight efficiency. Science 325:1549–1552CrossRefGoogle Scholar
  32. [32].
    Pesavento U, Wang ZJ (2004) Falling paper: Navier-stokes solutions, model of fluid forces, and center of mass elevation. Phys Rev Lett 93:144501CrossRefGoogle Scholar
  33. [33].
    Andersen A, Pesavento U, Wang ZJ (2005) Unsteady aerodynamics of fluttering and tumbling plates. J Fluid Mech 541:65–90MathSciNetzbMATHCrossRefGoogle Scholar
  34. [34].
    Sane SP, Dickinson MH (2002) The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J Exp Biol 205:1087–1096Google Scholar
  35. [35].
    Featherstone R, Orin D (2000) Robot dynamics: equations and algorithms. In: IEEE international conference robotics & automation, San Francisco, pp 826–834Google Scholar
  36. [36].
    Deng X, Schenato L, Wu WC, Sastry SS (2006) Flapping flight for biomimetic insects: part I – system modeling. IEEE Trans Robot 22:776–788CrossRefGoogle Scholar
  37. [37].
    Deng X, Schenato L, Sastry SS (2006) Flapping flight for biomimetic insects: part II – flight control design. IEEE Trans Robot 22:789–803CrossRefGoogle Scholar
  38. [38].
    Hedrick TL, Daniel TL (2006) Flight control in the hawkmoth Manduca sexta: the inverse problem of hovering. J Exp Biol 209:3114–3130CrossRefGoogle Scholar
  39. [39].
    Dickson WB, Straw AD, Dickinson MH (2008) Integrative model of Drosophila flight. AIAA J 46:2150–2164CrossRefGoogle Scholar
  40. [40].
    Faruque I, Humbert JS (2010) Dipteran insect flight dynamics. Part 1: longitudinal motion about hover. J Theor Biol 264:538–552CrossRefGoogle Scholar
  41. [41].
    Faruque I, Humbert JS (2010) Dipteran insect flight dynamics. Part 2: lateral-directional motion about hover. J Theor Biol 265:306–313CrossRefGoogle Scholar
  42. [42].
    Sun M, Wu JH (2003) Aerodynamic force generation and power requirements in forwar flight in a fruit fly with modeled wing motion. J Exp Biol 206:3065–3083CrossRefGoogle Scholar
  43. [43].
    Gao N, Aono H, Liu H (2011) Perturbation analysis of 6DoF flight dynamics and passive dynamic stability of hovering fruit fly Drosophila melanogaster. J Theor Biol 270:98–111CrossRefGoogle Scholar
  44. [44].
    Hesselberg T, Lehmann F-O (2007) Turning behavior depends on frictional damping in the fruit fly Drosophila. J Exp Biol 210:4319–4334CrossRefGoogle Scholar
  45. [45].
    Dickinson MH, Lehmann F-O, Sane S (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284:1954–1960CrossRefGoogle Scholar
  46. [46].
    Bechhoefer J (2005) Feedback for physicists: a tutorial essay on control. Rev Mod Phys 77:783–836CrossRefGoogle Scholar
  47. [47].
    Pringle JWS (1948) The gyroscopic mechanism of the halteres of Diptera. Philos Trans R Soc Lond B 233:347–384CrossRefGoogle Scholar
  48. [48].
    Dickinson MH (1999) Haltere-mediated equilibrium reflexes of the fruit fly, Drosophila melanogaster. Philos Trans R Soc Lond B 354:903–916CrossRefGoogle Scholar
  49. [49].
    Heide G (1983) Neural mechanisms of flight control in Diptera. In: BIONA report 2, Fischer, Stuttgart, pp 35–52Google Scholar
  50. [50].
    Taylor GK, Krapp HG (2007) Sensory systems and flight stability: what do insects measure and why? Adv Insect Physiol 34:231–316CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Leif Ristroph
    • 1
    Email author
  • Attila J. Bergou
    • 2
  • Gordon J. Berman
    • 3
  • John Guckenheimer
    • 4
  • Z. Jane Wang
    • 5
  • Itai Cohen
    • 1
  1. 1.Department of PhysicsCornell UniversityIthacaUSA
  2. 2.Department of EngineeringBrown UniversityProvidenceUSA
  3. 3.Lewis-Sigler Institute for Integrative GenomicsPrinceton UniversityPrincetonUSA
  4. 4.Department of MathematicsCornell UniversityIthacaUSA
  5. 5.Departments of Mechanical and Aerospace Engineering and PhysicsCornell UniversityIthacaUSA

Personalised recommendations