Skip to main content

Efficient Flapping Flight Using Flexible Wings Oscillating at Resonance

Part of the The IMA Volumes in Mathematics and its Applications book series (IMA,volume 155)

Abstract

We use fully-coupled three-dimensional computer simulations to examine aerodynamics of elastic wings oscillating at resonance. Wings are modeled as planar elastic plates plunging sinusoidally at a low Reynolds number. The wings are tilted from horizontal, thereby generating asymmetric flow patterns and non-zero net aerodynamic forces. Our simulations reveal that resonance oscillations of elastic wings drastically enhance aerodynamic lift, thrust, and efficiency. We show that flexible wings driven at resonance by a simple harmonic stroke generate lift comparable to that of small insects that employ a significantly more complicated stroke kinematics. The results of our simulations point to the feasibility of using flexible resonant wings with a simple stroke for designing efficient microscale flying vehicles.

Key words

  • Low Reynolds number
  • flapping flight
  • flexible wing
  • resonance
  • lattice Boltzmann model
  • MAV

The work was supported in part by the NSF through TeraGrid computational resources

AMS(MOS) subject classifications. Primary 76Z10, 74F10, 76M28

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-3997-4_19
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-4614-3997-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.00
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. 1.

    Unless stated otherwise, all dimensional values are given in lattice Boltzmann units.

References

  1. Ellington CP (1984) The aerodynamics of hovering insect flight. Part 2. Morphological parameters. Philos Trans R Soc B 305(1122):17–40

    Google Scholar 

  2. Dickinson MH, Lehmann FO, Sane SP (1999) Wing rotation and the aerodynamic basis of insect flight. Science 284(5422):1954–1960

    CrossRef  Google Scholar 

  3. Sane SP (2003) The aerodynamics of insect flight. J Exp Biol 206(23):4191–4208

    CrossRef  Google Scholar 

  4. Lehmann FO (2008) When wings touch wakes: understanding locomotor force control by wake-wing interference in insect wings. J Exp Biol 211(2):224–233

    CrossRef  Google Scholar 

  5. Shyy W, Lian Y, Tang J, Liu H, Trizila P, Stanford B, Bernal L, Cesnik C, Friedmann P, Ifju P (2008) Computational aerodynamics of low Reynolds number plunging, pitching and flexible wings for MAV applications. Acta Mech Sin 24(4):351–373

    CrossRef  Google Scholar 

  6. Pesavento U, Wang ZJ (2009) Flapping wing flight can save aerodynamic power compared to steady flight. Phys Rev Lett 103(11):118102–118104

    CrossRef  Google Scholar 

  7. Ansari SA, Zbikowski R, Knowles K (2006) Aerodynamic modelling of insect-like flapping flight for micro air vehicles. Prog Aerosp Sci 42(2):129–172

    CrossRef  Google Scholar 

  8. Zbikowski R (2002) On aerodynamic modelling of an insect-like flapping wring in hover for micro air vehicles. Philos Trans R Soc A 360(1791):273–290

    CrossRef  Google Scholar 

  9. Wood RJ (2008) The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans Robot 24(2):341–347

    CrossRef  Google Scholar 

  10. Ellington CP (1984) The aerodynamics of hovering insect flight. Part 3. Kinematics. Philos Trans R Soc B 305(1122):41–78

    Google Scholar 

  11. Watman D, Furukawa T (2008) A system for motion control and analysis of high-speed passively twisting flapping wings. In: Proceedings of the IEEE international conference robotics, Pasadena, pp 1576–1581

    Google Scholar 

  12. Vanella M, Fitzgerald T, Preidikman S, Balaras E, Balachandran B (2009) Influence of flexibility on the aerodynamic performance of a hovering wing. J Exp Biol 212(1):95–105

    CrossRef  Google Scholar 

  13. Michelin S, Smith SGL (2009) Resonance and propulsion performance of a heaving flexible wing. Phys Fluids 21(7):071902

    CrossRef  Google Scholar 

  14. Masoud H, Alexeev A (2010) Resonance of flexible flapping wings at low Reynolds number. Phys Rev E 81(5):056304

    CrossRef  Google Scholar 

  15. Spagnolie SE, Moret L, Shelley MJ, Zhang J (2010) Surprising behaviors in flapping locomotion with passive pitching. Phys Fluids 22(4):041903

    CrossRef  Google Scholar 

  16. Liu L, Fang Z, He Z (2008) Optimization design of flapping mechanism and wings for flapping-wing MAVs. Intell Robot Appl 5314:245–255

    CrossRef  Google Scholar 

  17. Thiria B, Godoy-Diana R (2010) How wing compliance drives the efficiency of self-propelled flapping flyers. Phys Rev E 82(1):015303

    CrossRef  Google Scholar 

  18. Yin B, Luo H (2010) Effect of wing inertia on hovering performance of flexible flapping wings. Phys Fluids 22(11):111902

    CrossRef  Google Scholar 

  19. Ho S, Nassef H, Pornsinsirirak N, Tai YC, Ho CM (2003) Unsteady aerodynamics and flow control for flapping wing flyers. Prog Aerosp Sci 39(8):635–681

    CrossRef  Google Scholar 

  20. Zhu Q (2007) Numerical simulation of a flapping foil with chordwise or spanwise flexibility. AIAA J 45(10):2448–2457

    CrossRef  Google Scholar 

  21. Liu H, Aono H (2009) Size effects on insect hovering aerodynamics: an integrated computational study. Bioinspir Biomim 4(1):015002

    CrossRef  Google Scholar 

  22. Kweon J, Choi H (2010) Sectional lift coefficient of a flapping wing in hovering motion. Phys Fluids 22(7):071703

    CrossRef  Google Scholar 

  23. Qi DW, Liu YM, Shyy W, Aono H (2010) Simulations of dynamics of plunge and pitch of a three-dimensional flexible wing in a low Reynolds number flow. Phys Fluid 22(9):091901

    CrossRef  Google Scholar 

  24. Masoud H, Alexeev A (2010) Modeling magnetic microcapsules that crawl in microchannels. Soft Matter 6(4):794–799

    CrossRef  Google Scholar 

  25. Alexeev A, Verber R, Balazs AC (2006) Designing compliant substrates to regulate the motion of vesicles. Phys Rev Lett 96(14):148103

    CrossRef  Google Scholar 

  26. Alexeev A, Verberg R, Balazs AC (2005) Modeling the motion of microcapsules on compliant polymeric surfaces. Macromolecules 38(24):10244–10260

    CrossRef  Google Scholar 

  27. Alexeev A, Yeomans JM, Balazs AC (2008) Designing synthetic, pumping cilia that switch the flow direction in microchannels. Langmuir 24(21):12102–12106

    CrossRef  Google Scholar 

  28. Alexeev A, Balazs AC (2007) Designing smart systems to selectively entrap and burst microcapsules. Soft Matter 3(12):1500–1505

    CrossRef  Google Scholar 

  29. Smith KA, Alexeev A, Verberg R, Balazs AC (2006) Designing a simple ratcheting system to sort microcapsules by mechanical properties. Langmuir 22(16):6739–6742

    CrossRef  Google Scholar 

  30. Bouzidi M, Firdaouss M, Lallemand P (2001) Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys Fluid 13(11):3452–3459

    CrossRef  Google Scholar 

  31. Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press, Oxford

    MATH  Google Scholar 

  32. Chen H, Filippova O, Hoch J, Molvig K, Shock R, Teixeira C, Zhang R (2006) Grid refinement in lattice Boltzmann methods based on volumetric formulation. Phys A 362(1):158–167

    CrossRef  Google Scholar 

  33. Zhu G, Alexeev A, Balazs AC (2007) Designing constricted microchannels to selectively entrap soft particles. Macromolecules 40(14):5176–5181

    CrossRef  Google Scholar 

  34. Taira K, Colonius T (2009) Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers. J Fluid Mech 623:187–207

    CrossRef  MATH  Google Scholar 

  35. Shih CC, Buchanan HJ (1971) Drag on oscillating flat plates in liquids at low Reynolds numbers. J. Fluid Mech 48(2):229–239

    CrossRef  Google Scholar 

  36. Keulegan GH, Carpenter LH (1958) Forces on cylinders and plates in an oscillating fluid. J Res Natl Bur Stand 60(5):423–440

    CrossRef  Google Scholar 

  37. Van Eysden CA, Sader JE (2007) Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope: arbitrary mode order. J Appl Phys 101(4):044908

    CrossRef  Google Scholar 

  38. Berman GJ, Wang ZJ (2007) Energy-minimizing kinematics in hovering insect flight. J Fluid Mech 582:153–168

    CrossRef  MathSciNet  MATH  Google Scholar 

  39. Wang ZJ (2004) The role of drag in insect hovering. J Exp Biol 207(23):4147–4155

    CrossRef  Google Scholar 

  40. Wang ZJ (2005) Dissecting insect flight. Annu Rev Fluid Mech 37:183–210

    CrossRef  Google Scholar 

  41. Bronson JR, Pulskamp JS, Polcawich RG, Kroninger CM, Wetzel ED (2009) PZT MEMS actuated flapping wings for insect-inspired robotics. In: Proceedings of the IEEE 22nd international conference micro electro mechanical systems, Sorrento, pp 1047–1050

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Alexeev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this paper

Cite this paper

Masoud, H., Alexeev, A. (2012). Efficient Flapping Flight Using Flexible Wings Oscillating at Resonance. In: Childress, S., Hosoi, A., Schultz, W., Wang, J. (eds) Natural Locomotion in Fluids and on Surfaces. The IMA Volumes in Mathematics and its Applications, vol 155. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3997-4_19

Download citation