Model Problems for Fish Schooling

  • Silas AlbenEmail author
Conference paper
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 155)


We review recent work on model systems for body-vortex and body-body interactions in a fluid, related to fish schooling. The studies show a variety of structured and disordered dynamics which can occur when vortices interact with passive and actively-driven deformable bodies. The energy savings due to body-vortex interactions depend strongly on the geometric arrangement of multiple bodies and/or ambient vortices, the phases of the bodies’ motions relative to those of the vortices and other bodies, and the rigidity of flexible appendages.

Key words

Flexible vorticity coupled flow-body 


  1. [1].
    Koehl MAR (2003) Physical modelling in biomechanics. Philos Trans R Soc Lond Ser B Biol Sci 358(1437):1589CrossRefGoogle Scholar
  2. [2].
    Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003) Fish exploiting vortices decrease muscle activity. Science 302(5650):1566–1569CrossRefGoogle Scholar
  3. [3].
    Liao JC (2007) A review of fish swimming mechanics and behaviour in altered flows. Philos Trans R Soc B Biol Sci 362(1487):1973CrossRefGoogle Scholar
  4. [4].
    Newman JN (1975) Swimming of slender fish in a non-uniform velocity field. ANZIAM J 19(1):95–111zbMATHCrossRefGoogle Scholar
  5. [5].
    Dabiri JO (2007) Renewable fluid dynamic energy derived from aquatic animal locomotion. Bioinspiration Biomim 2:L1CrossRefGoogle Scholar
  6. [6].
    Streitlien K, Triantafyllou GS, Triantafyllou MS (1996) Efficient foil propulsion through vortex control. AIAA J 34(11):2315–2319zbMATHCrossRefGoogle Scholar
  7. [7].
    Doligalski TL, Smith CR, Walker JDA (1994) Vortex interactions with walls. Annu Rev Fluid Mech 26(1):573–616MathSciNetCrossRefGoogle Scholar
  8. [8].
    Alben S (2009) On the swimming of a flexible body in a vortex street. J Fluid Mech 635:27–45MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9].
    Taylor G (1951) Analysis of the swimming of microscopic organisms. Proc R Soc Lond Ser A Math Phys Sci 209(1099):447–461zbMATHCrossRefGoogle Scholar
  10. [10].
    Alben S (2009) Passive and active bodies in vortex-street wakes. J Fluid Mech 642:95–125MathSciNetCrossRefGoogle Scholar
  11. [11].
    Eldredge JD, Pisani D (2008) Passive locomotion of a simple articulated fish-like system in the wake of an obstacle. J Fluid Mech 607:279–288zbMATHCrossRefGoogle Scholar
  12. [12].
    Manela A, Howe MS (2009) The forced motion of a flag. J Fluid Mech 635:439–454MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13].
    Alben S (2011) Interactions between vortices and flexible walls. Int J Non-Linear Mech 46:586–591CrossRefGoogle Scholar
  14. [14].
    Rockwell D (1998) Vortex-body interactions. Ann Rev Fluid Mech 30(1):199–229MathSciNetCrossRefGoogle Scholar
  15. [15].
    Dong GJ, Lu XY (2007) Characteristics of flow over traveling wavy foils in a side-by-side arrangement. Phys Fluids 19:057107CrossRefGoogle Scholar
  16. [16].
    Wang ZJ, Russell D (2007) Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight. Phys Rev Lett 99(14):148101CrossRefGoogle Scholar
  17. [17].
    Zhu L, Peskin CS (2003) Interaction of two flapping filaments in a flowing soap film. Phys Fluids 15:1954–1960MathSciNetCrossRefGoogle Scholar
  18. [18].
    Zhang J, Childress S, Libchaber A, Shelley M (2000) Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature 408(6814):835–839CrossRefGoogle Scholar
  19. [19].
    Shelley MJ, Zhang J (2011) Flapping and bending bodies interacting with fluid flows. Annu Rev Fluid Mech 43(1):449MathSciNetCrossRefGoogle Scholar
  20. [20].
    Farnell DJJ, David T, Barton DC (2004) Coupled states of flapping flags. J Fluid Struct 19(1):29–36CrossRefGoogle Scholar
  21. [21].
    Jia L-B, Li F, Yin X-Z, Yin X-Y (2007) Coupling modes between two flapping filaments. J Fluid Mech 581:199–220MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22].
    Drucker EG, Lauder GV (2001) Locomotor function of the dorsal fin in teleost fishes: experimental analysis of wake forces in sunfish. J Exp Biol 204(17):2943–2958Google Scholar
  23. [23].
    Ristroph L, Zhang J (2008) Anomalous hydrodynamic drafting of interacting flapping flags. Phys Rev Lett 101(19):194502CrossRefGoogle Scholar
  24. [24].
    Alben S (2009) Wake-mediated synchronization and drafting in coupled flags. J Fluid Mech 641:489–496MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25].
    Schouveiler L, Eloy C (2009) Coupled flutter of parallel plates. Phys Fluids 21:081703CrossRefGoogle Scholar
  26. [26].
    Michelin S, Llewellyn Smith SG (2009) Linear stability analysis of coupled parallel flexible plates in an axial flow. J Fluids Struct 25(7):1136–1157CrossRefGoogle Scholar
  27. [27].
    Zhu L (2009) Interaction of two tandem deformable bodies in a viscous incompressible flow. J Fluid Mech 635:455–475MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28].
    Kim S, Huang W, Sung HJ (2010) Constructive and destructive interaction modes between two tandem flexible flags in viscous flow. J Fluid Mech 661:511–521zbMATHCrossRefGoogle Scholar
  29. [29].
    Weihs D (1973) Hydromechanics of fish schooling. Nature 241(5387):290–291CrossRefGoogle Scholar
  30. [30].
    Kanso E, Marsden JE, Rowley CW, Melli-Huber JB (2005) Locomotion of articulated bodies in a perfect fluid. J Nonlinear Sci 15(4):255–289MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31].
    Kelly SD, Xiong H (2006) Controlled hydrodynamic interactions in schooling aquatic locomotion. In: Decision and control, 2005 and 2005 European control conference. CDC-ECC’05. 44th IEEE conference on, Seville. IEEE, pp 3904–3910Google Scholar
  32. [32].
    Nair S, Kanso E (2007) Hydrodynamically coupled rigid bodies. J Fluid Mech 592:393–411MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33].
    Partridge BL, Pitcher TJ (1979) Evidence against a hydrodynamic function for fish schools. Nature 279(5712):418CrossRefGoogle Scholar
  34. [34].
    Fauci LJ (1990) Interaction of oscillating filaments: a computational study. J Comput Phys 86(2):294–313MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35].
    Fish FE (1995) Kinematics of ducklings swimming in formation: consequences of position. J Exp Zool 273(1):1–11MathSciNetCrossRefGoogle Scholar
  36. [36].
    Saintillan D, Shelley MJ (2007) Orientational order and instabilities in suspensions of self-locomoting rods. Phys Rev Lett 99(5):58102CrossRefGoogle Scholar
  37. [37].
    Ishikawa T, Pedley TJ (2008) Coherent structures in monolayers of swimming particles. Phys Rev Lett 100(8):88103CrossRefGoogle Scholar
  38. [38].
    Saintillan D, Shelley MJ (2008) Instabilities and pattern formation in active particle suspensions: kinetic theory and continuum simulations. Phys Rev Lett 100(17):178103CrossRefGoogle Scholar
  39. [39].
    Pedley TJ (2010) Collective behaviour of swimming micro-organisms. Exp Mech 50(9):1293–1301CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations