Skip to main content

Molecular Dynamics Simulations of the Ribosome

  • Chapter
  • First Online:
  • 1518 Accesses

Part of the book series: Biophysics for the Life Sciences ((BIOPHYS,volume 1))

Abstract

Structural biology techniques such as crystallography and cryo-EM produce high resolution snap shots of the ribosome at various stages of protein synthesis. Single molecule studies yield time-resolved measurements with low spatial resolution. Currently, there is no experimental technique capable of producing time-resolved trajectories of the ribosome with atomistic resolution. Computer simulations are critical for furthering our understanding of the ribosome because they fill this gap. We review computational studies of the ribosome, including structural modeling, normal mode calculations, coarse grain simulations, and molecular dynamics simulations. Several success stories have occurred, where predictions based on computer simulations were verified experimentally.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Auffinger P, LouiseMay S, Westhof E (1999) Molecular dynamics simulations of solvated yeast tRNA(Asp). Biophys J 76:50–64

    Article  PubMed  CAS  Google Scholar 

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289:905–920

    Article  PubMed  CAS  Google Scholar 

  • Baxter-Roshek JL, Petrov AN, Dinman JD (2007) Optimization of ribosome structure and function by rRNA base modification. PLoS One 2:e174

    Article  PubMed  Google Scholar 

  • Berk V, Zhang W, Pai RD, Cate JH (2006) Structural basis for mRNA and tRNA positioning on the ribosome. Proc Natl Acad Sci USA 103:15830–15834

    Article  PubMed  CAS  Google Scholar 

  • Berneche S, Roux B (2001) Energetics of ion conduction through the K+ channel. Nature 414:73–77

    Article  PubMed  CAS  Google Scholar 

  • Blanchard SC (2009) Single-molecule observations of ribosome function. Curr Opin Struct Biol 19:103–109

    Article  PubMed  CAS  Google Scholar 

  • Blanchard SC, Kim HD, Gonzalez RL Jr, Puglisi JD, Chu S (2004) tRNA dynamics on the ribosome during translation. Proc Natl Acad Sci USA 101:12893–12898

    Article  PubMed  CAS  Google Scholar 

  • Blanchard SC, Cooperman BS, Wilson DN (2010) Probing translation with small-molecule inhibitors. Chem Biol 17:633–645

    Article  PubMed  CAS  Google Scholar 

  • Bocharov EV, Sobol AG, Pavlov KV, Korzhnev DM, Jaravine VA, Gudkov AT, Arseniev AS (2004) From structure and dynamics of protein L7/L12 to molecular switching in ribosome. J Biol Chem 279:17697–17706

    Article  PubMed  CAS  Google Scholar 

  • Bockmann RA, Grubmuller H (2002) Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase. Nat Struct Biol 9:198–202

    PubMed  CAS  Google Scholar 

  • Carter AP, Clemons WM, Brodersen DE, MorganWarren RJ, Wimberly BT, Ramakrishnan V (2000) Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340–348

    Article  PubMed  CAS  Google Scholar 

  • Chacon P, Tama F, Wriggers W (2003) Mega-Dalton biomolecular motion captured from electron microscopy reconstructions. J Mol Biol 326:485–492

    Article  PubMed  CAS  Google Scholar 

  • Connell SR, Topf M, Qin Y, Wilson DN, Mielke T, Fucini P, Nierhaus KH, Spahn CM (2008) A new tRNA intermediate revealed on the ribosome during EF4-mediated back-translocation. Nat Struct Mol Biol 15:910–915

    Article  PubMed  CAS  Google Scholar 

  • Cornish PV, Ermolenko DN, Staple DW, Hoang L, Hickerson RP, Noller HF, Ha T (2009) Following movement of the L1 stalk between three functional states in single ribosomes. Proc Natl Acad Sci USA 106:2571–2576

    Article  PubMed  CAS  Google Scholar 

  • Demeshkina N, Jenner L, Yusupova G, Yusupov M (2010) Interactions of the ribosome with mRNA and tRNA. Curr Opin Struct Biol 20:325–332

    Article  PubMed  CAS  Google Scholar 

  • Diaconu M, Kothe U, Schlunzen F, Fischer N, Harms JM, Tonevitsky AG, Stark H, Rodnina MV, Wahl MC (2005) Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell 121:991–1004

    Article  PubMed  CAS  Google Scholar 

  • Dlugosz M, Trylska J (2009) Aminoglycoside association pathways with the 30S ribosomal subunit. J Phys Chem B 113:7322–7330

    Article  PubMed  CAS  Google Scholar 

  • Ermolenko DN, Majumdar ZK, Hickerson RP, Spiegel PC, Clegg RM, Noller HF (2007) Observation of intersubunit movement of the ribosome in solution using FRET. J Mol Biol 370:530–540

    Article  PubMed  CAS  Google Scholar 

  • Feldman MB, Terry DS, Altman RB, Blanchard SC (2010) Aminoglycoside activity observed on single pre-translocation ribosome complexes. Nat Chem Biol 6:244

    Article  PubMed  CAS  Google Scholar 

  • Fischer N, Konevega AL, Wintermeyer W, Rodnina MV, Stark H (2010) Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy. Nature 466:329–333

    Article  PubMed  CAS  Google Scholar 

  • Fourmy D, Yoshizawa S, Puglisi JD (1998) Paromomycin binding induces a local conformational change in the A-site of 16S rRNA. J Mol Biol 277:333–345

    Article  PubMed  CAS  Google Scholar 

  • Frank J, Agrawal RK (2000) A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406:318–322

    Article  PubMed  CAS  Google Scholar 

  • Frank J, Sengupta J, Gao H, Li W, Valle M, Zavialov A, Ehrenberg M (2005) The role of tRNA as a molecular spring in decoding, accommodation, and peptidyl transfer. FEBS Lett 579:959–962

    Article  PubMed  CAS  Google Scholar 

  • Gao H, Sengupta J, Valle M, Korostelev A, Eswar N, Stagg SM, Van Roey P, Agrawal RK, Harvey SC, Sali A, Chapman MS, Frank J (2003) Study of the structural dynamics of the E. coli 70S ribosome using real-space refinement. Cell 113:789–801

    Article  PubMed  CAS  Google Scholar 

  • Gao YG, Selmer M, Dunham CM, Weixlbaumer A, Kelley AC, Ramakrishnan V (2009) The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326:694–699

    Article  PubMed  CAS  Google Scholar 

  • Garcia AE, Sanbonmatsu KY (2001) Exploring the energy landscape of a beta hairpin in explicit solvent. Proteins 42:345–354

    Article  PubMed  CAS  Google Scholar 

  • Ge X, Roux B (2010) Absolute binding free energy calculations of sparsomycin analogs to the bacterial ribosome. J Phys Chem B 114:9525–9539

    Article  PubMed  CAS  Google Scholar 

  • Geggier P, Dave R, Feldman MB, Terry DS, Altman RB, Munro JB, Blanchard SC (2010) Conformational sampling of aminoacyl-tRNA during selection on the bacterial ribosome. J Mol Biol 399:576–595

    Article  PubMed  CAS  Google Scholar 

  • Ishida H, Hayward S (2008) Path of nascent polypeptide in exit tunnel revealed by molecular dynamics simulation of ribosome. Biophys J 95:5962–5973

    Article  PubMed  Google Scholar 

  • Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646–652

    Article  PubMed  CAS  Google Scholar 

  • Kaul M, Pilch DS (2002) Thermodynamics of aminoglycoside-rRNA Rrecognition: the binding of neomycin-class aminoglycosides of the A site of 16S rRNA. Biochemistry 41:7695–7706

    Article  PubMed  CAS  Google Scholar 

  • Korostelev A, Trakhanov S, Laurberg M, Noller HF (2006) Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Cell 126:1065–1077

    Article  PubMed  CAS  Google Scholar 

  • Li W, Ma B, Shapiro B (2003) Binding interactions between the core central domain of 16S rRNA and the ribosomal protein S15 determined by molecular dynamics simulations. Nucleic Acids Res 31:629–638

    Article  PubMed  CAS  Google Scholar 

  • Lim VI, Curran JF (2001) Analysis of codon: anticodon interactions within the ribosome provides new insights into codon reading and the genetic code structure. RNA 7:942–957

    Article  PubMed  CAS  Google Scholar 

  • Majumdar ZK, Hickerson R, Noller HF, Clegg RM (2005) Measurements of internal distance changes of the 30S ribosome using FRET with multiple donor-acceptor pairs: quantitative spectroscopic methods. J Mol Biol 351:1123–1145

    Article  PubMed  CAS  Google Scholar 

  • Malhotra A, Tan RK, Harvey SC (1990) Prediction of the three-dimensional structure of Escherichia coli 30S ribosomal subunit: a molecular mechanics approach. Proc Natl Acad Sci USA 87:1950–1954

    Article  PubMed  CAS  Google Scholar 

  • Malhotra A, Tan RK, Harvey SC (1994) Modeling large RNAs and ribonucleoprotein particles using molecular mechanics techniques. Biophys J 66:1777–1795

    Article  PubMed  CAS  Google Scholar 

  • Mankin A (2006) Antibiotic blocks mRNA path on the ribosome. Nat Struct Mol Biol 13:858–860

    Article  PubMed  CAS  Google Scholar 

  • McCammon JA, Gelin BR, Karplus M (1977) Dynamics of folded proteins. Nature 267:585–590

    Article  PubMed  CAS  Google Scholar 

  • Mears JA, Cannone JJ, Stagg SM, Gutell RR, Agrawal RK, Harvey SC (2002) Modeling a minimal ribosome based on comparative sequence analysis. J Mol Biol 321:215–234

    Article  PubMed  CAS  Google Scholar 

  • Meskauskas A, Dinman JD (2007) Ribosomal protein L3: gatekeeper to the A site. Mol Cell 25:877–888

    Article  PubMed  CAS  Google Scholar 

  • Moazed D, Noller HF (1989) Intermediate states in the movement of transfer RNA in the ribosome. Nature 342:142–148

    Article  PubMed  CAS  Google Scholar 

  • Munro JB, Altman RB, O’Connor N, Blanchard SC (2007) Identification of two distinct hybrid state intermediates on the ribosome. Mol Cell 25:505–517

    Article  PubMed  CAS  Google Scholar 

  • Munro JB, Altman RB, Tung CS, Cate JH, Sanbonmatsu KY, Blanchard SC (2010a) Spontaneous formation of the unlocked state of the ribosome is a multistep process. Proc Natl Acad Sci USA 107:709–714

    Article  PubMed  CAS  Google Scholar 

  • Munro JB, Altman RB, Tung CS, Sanbonmatsu KY, Blanchard SC (2010b) A fast dynamic mode of the EF-G-bound ribosome. EMBO J 29:770–781

    Article  PubMed  CAS  Google Scholar 

  • Noel JK, Whitford PC, Sanbonmatsu KY, Onuchic JN (2010) SMOG@ctbp: simplified deployment of structure-based models in GROMACS. Nucleic Acids Res 38(Suppl):W657–W661

    Article  PubMed  CAS  Google Scholar 

  • Ogle JM, Brodersen DE, Clemons WM Jr, Tarry MJ, Carter AP, Ramakrishnan V (2001) Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292:897–902

    Article  PubMed  CAS  Google Scholar 

  • Pioletti M, Schlunzen F, Harms J, Zarivach R, Gluhmann M, Avila H, Bashan A, Bartels H, Auerbach T, Jacobi C, Hartsch T, Yonath A, Franceschi F (2001) Crystal structures of complexes of the small ribosomal subunit with tetracycline; edeine and IF3. EMBO J 20:1829–1839

    Article  PubMed  CAS  Google Scholar 

  • Ratje R et al (2010) Head swivel on the ribosome facillitates translocation via intra-subunit tRNA hybrid sites. Nature 468:713–716

    Article  PubMed  CAS  Google Scholar 

  • Razga F, Spackova N, Reblova K, Koca J, Leontis NB, Sponer J (2004) Ribosomal RNA kink-turn motif–a flexible molecular hinge. J Biomol Struct Dyn 22:183–194

    Article  PubMed  CAS  Google Scholar 

  • Razga F, Koca J, Sponer J, Leontis NB (2005) Hinge-like motions in RNA kink-turns: the role of the second a-minor motif and nominally unpaired bases. Biophys J 88:3466–3485

    Article  PubMed  CAS  Google Scholar 

  • Sanbonmatsu KY (2006) Energy landscape of the ribosomal decoding center. Biochimie 88:1053–1059

    Article  PubMed  CAS  Google Scholar 

  • Sanbonmatsu KY, Garcia AE (2002) Structure of Met-enkephalin in explicit aqueous solution using replica exchange molecular dynamics. Proteins 46:225–234

    Article  PubMed  CAS  Google Scholar 

  • Sanbonmatsu KY, Joseph S (2003) Understanding discrimination by the ribosome: stability testing and groove measurement of codon-anticodon pairs. J Mol Biol 328:33–47

    Article  PubMed  CAS  Google Scholar 

  • Sanbonmatsu KY, Joseph S, Tung CS (2005) Simulating movement of tRNA into the ribosome during decoding. Proc Natl Acad Sci USA 102:15854–15859

    Article  PubMed  CAS  Google Scholar 

  • Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M, Janell D, Bashan A, Bartels H, Agmon I, Franceschi F, Yonath A (2000) Structure of functionally activated small ribosomal subunit at 3.3 angstrom resolution. Cell 102:615–623

    Article  PubMed  CAS  Google Scholar 

  • Schlunzen F, Zarivach R, Harms R, Bashan A, Tocilj A, Albrecht R, Yonath A, Franceschi F (2001) Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413:814–821

    Article  PubMed  CAS  Google Scholar 

  • Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH (2005) Structures of the bacterial ribosome at 3.5 A resolution. Science 310:827–834

    Article  PubMed  CAS  Google Scholar 

  • Selmer M, Dunham CM, Murphy FVt, Weixlbaumer A, Petry S, Kelley AC, Weir JR, Ramakrishnan V (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313:1935–1942

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker BA, Portman JJ, Wolynes PG (2000) Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc Natl Acad Sci USA 97:8868–8873

    Article  PubMed  CAS  Google Scholar 

  • Sporlein S, Carstens H, Satzger H, Renner C, Behrendt R, Moroder L, Tavan P, Zinth W, Wachtveitl J (2002) Ultrafast spectroscopy reveals subnanosecond peptide conformational dynamics and validates molecular dynamics simulation. Proc Natl Acad Sci USA 99:7998–8002

    Article  PubMed  Google Scholar 

  • Tama F, Valle M, Frank J, Brooks CL 3rd (2003) Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy. Proc Natl Acad Sci USA 100:9319–9323

    Article  PubMed  CAS  Google Scholar 

  • Trabuco LG, Schreiner E, Eargle J, Cornish P, Ha T, Luthey-Schulten Z, Schulten K (2010a) The role of L1 stalk-tRNA interaction in the ribosome elongation cycle. J Mol Biol 402:741–760

    Article  PubMed  CAS  Google Scholar 

  • Trabuco LG, Harrison CB, Schreiner E, Schulten K (2010b) Recognition of the regulatory nascent chain TnaC by the ribosome. Structure 18:627–637

    Article  PubMed  CAS  Google Scholar 

  • Trylska J, Konecny R, Tama F, Brooks CL 3rd, McCammon JA (2004) Ribosome motions modulate electrostatic properties. Biopolymers 74:423–431

    Article  PubMed  CAS  Google Scholar 

  • Vaiana AC, Sanbonmatsu KY (2009) Stochastic gating and drug-ribosome interactions. J Mol Biol 386:648–661

    Article  PubMed  CAS  Google Scholar 

  • Valle M, Sengupta J, Swami NK, Grassucci RA, Burkhardt N, Nierhaus KH, Agrawal R, Frank J (2002) Cryo-EM reveals an active role for aminoacyl-tRNA in the accommodation process. EMBO J 21:3557–3567

    Article  PubMed  CAS  Google Scholar 

  • Valle M, Zavialov A, Li W, Stagg SM, Sengupta J, Nielsen RC, Nissen P, Harvey SC, Ehrenberg M, Frank J (2003) Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy. Nat Struct Biol 10:899–906

    Article  PubMed  CAS  Google Scholar 

  • Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718

    Article  Google Scholar 

  • VanLoock MS, Easterwood TR, Harvey SC (1999) Major groove binding of the tRNA/mRNA complex to the 16S ribosomal RNA decoding site. J Mol Biol 285:2069–2078

    Article  PubMed  CAS  Google Scholar 

  • VanLoock MS, Agrawal RK, Gabashvili IS, Qi L, Frank J, Harvey SC (2000) Movement of the decoding region of the 16S ribosomal RNA accompanies tRNA translocation. J Mol Biol 304:507–515

    Article  PubMed  CAS  Google Scholar 

  • Vicens Q, Westhof E (2003) Crystal structure of geneticin bound to a bacterial 16S ribosomal RNA A site oligonucleotide. J Mol Biol 326:1175–1188

    Article  PubMed  CAS  Google Scholar 

  • Villa E, Sengupta J, Trabuco LG, LeBarron J, Baxter WT, Shaikh TR, Grassucci RA, Nissen P, Ehrenberg M, Schulten K, Frank J (2009) Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. Proc Natl Acad Sci USA 106:1063–1068

    Article  PubMed  CAS  Google Scholar 

  • Voorhees RM, Weixlbaumer A, Loakes D, Kelley AC, Ramakrishnan V (2009) Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Nat Struct Mol Biol 16:528–533

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Rader AJ, Bahar I, Jernigan RL (2004) Global ribosome motions revealed with elastic network model. J Struct Biol 147:302–314

    Article  PubMed  CAS  Google Scholar 

  • Whitford PC, Noel JK, Gosavi S, Schug A, Sanbonmatsu KY, Onuchic JN (2009a) An all-atom structure-based potential for proteins: bridging minimal models with all-atom empirical forcefields. Proteins 75:430–441

    Article  PubMed  CAS  Google Scholar 

  • Whitford PC, Schug A, Saunders J, Hennelly SP, Onuchic JN, Sanbonmatsu KY (2009b) Nonlocal helix formation is key to understanding S-adenosylmethionine-1 riboswitch function. Biophys J 96:L7–L9

    Article  PubMed  Google Scholar 

  • Whitford PC, Geggier P, Altman RB, Blanchard SC, Onuchic JN, Sanbonmatsu KY (2010a) Accommodation of aminoacyl-tRNA into the ribosome involves reversible excursions along multiple pathways. RNA 16:1196–1204

    Article  PubMed  CAS  Google Scholar 

  • Whitford PC, Onuchic JN, Sanbonmatsu KY (2010b) Connecting energy landscapes with experimental rates for aminoacyl-tRNA accommodation in the ribosome. J Am Chem Soc 132:13170–13171

    Article  PubMed  CAS  Google Scholar 

  • Wintermeyer W, Peske F, Beringer M, Gromadski KB, Savelsbergh A, Rodnina MV (2004) Mechanisms of elongation on the ribosome: dynamics of a macromolecular machine. Biochem Soc Trans 32:733–737

    Article  PubMed  CAS  Google Scholar 

  • Young MA, Gonfloni S, Superti-Furga G, Roux B, Kuriyan J (2001) Dynamic coupling between the SH2 and SH3 domains of c-Src and Hck underlies their inactivation by C-terminal tyrosine phosphorylation. Cell 105:115–126

    Article  PubMed  CAS  Google Scholar 

  • Yusupova G, Jenner L, Rees B, Moras D, Yusupov M (2006) Structural basis for messenger RNA movement on the ribosome. Nature 444:391–394

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Kimmel M, Spahn CM, Penczek PA (2008) Heterogeneity of large macromolecular complexes revealed by 3D cryo-EM variance analysis. Structure 16:1770–1776

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Dunkle JA, Cate JH (2009) Structures of the ribosome in intermediate states of ratcheting. Science 325:1014–1017

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karissa Y. Sanbonmatsu or Scott C. Blanchard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sanbonmatsu, K.Y., Blanchard, S.C., Whitford, P.C. (2012). Molecular Dynamics Simulations of the Ribosome. In: Dinman, J. (eds) Biophysical approaches to translational control of gene expression. Biophysics for the Life Sciences, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3991-2_3

Download citation

Publish with us

Policies and ethics