• Zhening Li
  • Simai He
  • Shuzhong Zhang
Part of the SpringerBriefs in Optimization book series (BRIEFSOPTI)


The study of polynomial optimization models is rooted in various problems in scientific computation and other engineering applications. To illustrate some typical applications of the models studied in Chaps. 2 and 3, in this chapter we present some concrete examples in four categories: homogeneous polynomial over the Euclidean sphere; polynomial optimization over a general set; discrete polynomial optimization; and mixed integer programming. We shall note that the examples are selected to serve the purpose of illustration only; many more other interesting examples can be found in the literature. There is in fact an ongoing effort to apply polynomial optimization models to science and engineering, management and computation, health care and data-driven knowledge discovery, to name a few examples.


Sensor Node Portfolio Selection Anchor Node Order Tensor Polynomial Optimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Aardal, K., Hurkens, C.A.J., Lenstra, A.K.: Solving a system of linear Diophantine equations with lower and upper bounds on the variables. Math. Oper. Res. 25, 427–442 (2000)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Alfonsín, J.L.R.: The Diophantine Frobenius Problem. Oxford University Press, Oxford (2005)MATHCrossRefGoogle Scholar
  3. 3.
    Alon, N., de la Vega, W.F., Kannan, R., Karpinski, M.: Random sampling and approximation of MAX-CSP problems. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pp. 232–239 (2002)Google Scholar
  4. 5.
    Alon, N., Naor, A.: Approximating the cut-norm via grothendieck’s inequality. SIAM J. Comput. 35, 787–803 (2006)MathSciNetMATHCrossRefGoogle Scholar
  5. 10.
    De Athayde, G.M., Flôres, Jr., R.G.: Incorporating skewness and kurtosis in portfolio optimization: A multidimensional efficient set. In: Satchell, S., Scowcroft, A. (eds.) Advances in Portfolio Construction and Implementation, pp. 243–257, Ch. 10. Butterworth-Heinemann, Oxford (2003)Google Scholar
  6. 13.
    Barmpoutis, A., Jian, B., Vemuri, B.C., Shepherd, T.M.: Symmetric positive 4th order tensors and their estimation from diffusion weighted MRI. In: Proceedings of the 20th International Conference on Information Processing in Medical Imaging, pp. 308–319 (2007)Google Scholar
  7. 15.
    Beihoffer, D., Hendry, J., Nijenhuis, A., Wagon, S.: Faster algorithms for Frobenius numbers. Electr. J. Comb. 12, R27 (2005)MathSciNetGoogle Scholar
  8. 17.
    Bernhardsson, B., Peetre, J.: Singular values of trilinear forms. Exp. Math. 10, 509–517 (2001)MathSciNetMATHCrossRefGoogle Scholar
  9. 22.
    Carroll, J.D., Chang, J.-J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika 35, 283–319 (1970)MATHCrossRefGoogle Scholar
  10. 25.
    Cornuéjols, G., Dawande, M.: A class of hard small 0–1 programs. INFORMS J. Comput. 11, 205–210 (1999)MathSciNetMATHCrossRefGoogle Scholar
  11. 26.
    Dahl, G., Leinaas, J.M., Myrheim, J., Ovrum, E.: A tensor product matrix approximation problem in quantum physics. Linear Algebra Appl. 420, 711–725 (2007)MathSciNetMATHCrossRefGoogle Scholar
  12. 27.
    De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21, 1253–1278 (2000)MathSciNetMATHCrossRefGoogle Scholar
  13. 28.
    De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-(R 1, R 2, , R N) approximation of higher order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)MathSciNetMATHCrossRefGoogle Scholar
  14. 35.
    Frieze, A.M., Kannan, R.: Quick approximation to matrices and applications. Combinatorica 19, 175–200 (1999)MathSciNetMATHCrossRefGoogle Scholar
  15. 37.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)Google Scholar
  16. 38.
    Ghosh, A., Tsigaridas, E., Descoteaux, M., Comon, P., Mourrain, B., Deriche, R.: A polynomial based approach to extract the maxima of an antipodally symmetric spherical function and its application to extract fiber directions from the orientation distribution function in diffusion MRI. In: Proceedings of the 11th International Conference on Medical Image Computing and Computer Assisted Intervention, pp. 237–248 (2008)Google Scholar
  17. 39.
    Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)MathSciNetMATHCrossRefGoogle Scholar
  18. 40.
    Gurvits, L.: Classical deterministic complexity of edmonds’ problem and quantum entanglement. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pp. 10–19 (2003)Google Scholar
  19. 43.
    Harshman, R.A.: Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multi-modal factor analysis, UCLA Working Papers in Phonetics 16, 1–84 (1970)Google Scholar
  20. 52.
    Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6, 164–189 (1927)MATHGoogle Scholar
  21. 53.
    Hitchcock, F.L.: Multilple invariants and generalized rank of a p-way matrix or tensor. J. Math. Phys. 6, 39–79 (2007)Google Scholar
  22. 56.
    Jondeau, E., Rockinger, M.: Optimal portfolio allocation under higher moments. Eur. Financ. Manag. 12, 29–55 (2006)CrossRefGoogle Scholar
  23. 58.
    Kannan, R.: Spectral methods for matrices and tensors. In: Proceedings of the 42nd Annual ACM Symposium on Theory of Computing, pp. 1–12 (2010)Google Scholar
  24. 60.
    Kleniati, P.M., Parpas, P., Rustem, B.: Partitioning procedure for polynomial optimization: Application to portfolio decisions with higher order moments, COMISEF Working Papers Series, WPS-023 (2009)Google Scholar
  25. 64.
    Kofidis, E., Regalia, Ph.: On the best rank-1 approximation of higher order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23, 863–884 (2002)MathSciNetMATHCrossRefGoogle Scholar
  26. 65.
    Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)MathSciNetMATHGoogle Scholar
  27. 71.
    Lim, L.-H.: Singular values and eigenvalues of tensors: A variantional approach. In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, vol. 1, pp. 129–132 (2005)Google Scholar
  28. 76.
    Luo, Z.-Q., Zhang, S.: A semidefinite relaxation scheme for multivariate quartic polynomial optimization with quadratic constraints. SIAM J. Optim. 20, 1716–1736 (2010)MathSciNetMATHCrossRefGoogle Scholar
  29. 77.
    Mandelbrot, B.B., Hudson, R.L.: The (Mis)Behavior of Markets: A Fractal View of Risk, Ruin, and Reward. Basic Books, New York (2004)MATHGoogle Scholar
  30. 80.
    Markowitz, H.M.: Portfolio selection. J. Finance 7, 79–91 (1952)Google Scholar
  31. 90.
    Ni, Q., Qi, L., Wang, F.: An eigenvalue method for testing positive definiteness of a multivariate form. IEEE Trans. Autom. Control 53, 1096–1107 (2008)MathSciNetCrossRefGoogle Scholar
  32. 95.
    Peng, L., Wong, M.W.: Compensated compactness and paracommutators. J. London Math. Soc. 62, 505–520 (2000)MathSciNetMATHCrossRefGoogle Scholar
  33. 96.
    Prakash, A.J., Chang, C.-H., Pactwa, T.E.: Selecting a portfolio with skewness: Recent evidence from US, European, and Latin American equity markets. J. Banking Finance 27, 1375–1390 (2003)CrossRefGoogle Scholar
  34. 98.
    Qi, L.: Extrema of a real polynomial. J. Global Optim. 30, 405–433 (2004)MathSciNetMATHCrossRefGoogle Scholar
  35. 99.
    Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)MATHCrossRefGoogle Scholar
  36. 100.
    Qi, L.: Eigenvalues and invariants of tensors. J. Math. Anal. Appl. 325, 1363–1377 (2007)MathSciNetMATHCrossRefGoogle Scholar
  37. 110.
    Sturm, J.F., Zhang, S.: On cones of nonnegative quadratic functions. Math. Oper. Res. 28, 246–267 (2003)MathSciNetMATHCrossRefGoogle Scholar
  38. 119.
    Zhang, T., Golub, G.H.: Rank-one approximation to high order tensors. SIAM J. Matrix Anal. Appl. 23, 534–550 (2001)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Zhening Li, Simai He,Shuzhong Zhang 2012

Authors and Affiliations

  • Zhening Li
    • 1
  • Simai He
    • 2
  • Shuzhong Zhang
    • 3
  1. 1.Department of MathematicsShanghai UniversityShanghaiChina
  2. 2.Department of Management SciencesCity University of Hong KongKowloon TongHong Kong
  3. 3.Industrial and Systems EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations