# Applications

• Zhening Li
• Simai He
• Shuzhong Zhang
Chapter
Part of the SpringerBriefs in Optimization book series (BRIEFSOPTI)

## Abstract

The study of polynomial optimization models is rooted in various problems in scientific computation and other engineering applications. To illustrate some typical applications of the models studied in Chaps. 2 and 3, in this chapter we present some concrete examples in four categories: homogeneous polynomial over the Euclidean sphere; polynomial optimization over a general set; discrete polynomial optimization; and mixed integer programming. We shall note that the examples are selected to serve the purpose of illustration only; many more other interesting examples can be found in the literature. There is in fact an ongoing effort to apply polynomial optimization models to science and engineering, management and computation, health care and data-driven knowledge discovery, to name a few examples.

## Keywords

Sensor Node Portfolio Selection Anchor Node Order Tensor Polynomial Optimization
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
Aardal, K., Hurkens, C.A.J., Lenstra, A.K.: Solving a system of linear Diophantine equations with lower and upper bounds on the variables. Math. Oper. Res. 25, 427–442 (2000)
2. 2.
Alfonsín, J.L.R.: The Diophantine Frobenius Problem. Oxford University Press, Oxford (2005)
3. 3.
Alon, N., de la Vega, W.F., Kannan, R., Karpinski, M.: Random sampling and approximation of MAX-CSP problems. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pp. 232–239 (2002)Google Scholar
4. 5.
Alon, N., Naor, A.: Approximating the cut-norm via grothendieck’s inequality. SIAM J. Comput. 35, 787–803 (2006)
5. 10.
De Athayde, G.M., Flôres, Jr., R.G.: Incorporating skewness and kurtosis in portfolio optimization: A multidimensional efficient set. In: Satchell, S., Scowcroft, A. (eds.) Advances in Portfolio Construction and Implementation, pp. 243–257, Ch. 10. Butterworth-Heinemann, Oxford (2003)Google Scholar
6. 13.
Barmpoutis, A., Jian, B., Vemuri, B.C., Shepherd, T.M.: Symmetric positive 4th order tensors and their estimation from diffusion weighted MRI. In: Proceedings of the 20th International Conference on Information Processing in Medical Imaging, pp. 308–319 (2007)Google Scholar
7. 15.
Beihoffer, D., Hendry, J., Nijenhuis, A., Wagon, S.: Faster algorithms for Frobenius numbers. Electr. J. Comb. 12, R27 (2005)
8. 17.
Bernhardsson, B., Peetre, J.: Singular values of trilinear forms. Exp. Math. 10, 509–517 (2001)
9. 22.
Carroll, J.D., Chang, J.-J.: Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika 35, 283–319 (1970)
10. 25.
Cornuéjols, G., Dawande, M.: A class of hard small 0–1 programs. INFORMS J. Comput. 11, 205–210 (1999)
11. 26.
Dahl, G., Leinaas, J.M., Myrheim, J., Ovrum, E.: A tensor product matrix approximation problem in quantum physics. Linear Algebra Appl. 420, 711–725 (2007)
12. 27.
De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21, 1253–1278 (2000)
13. 28.
De Lathauwer, L., De Moor, B., Vandewalle, J.: On the best rank-1 and rank-(R 1, R 2, , R N) approximation of higher order tensors. SIAM J. Matrix Anal. Appl. 21, 1324–1342 (2000)
14. 35.
Frieze, A.M., Kannan, R.: Quick approximation to matrices and applications. Combinatorica 19, 175–200 (1999)
15. 37.
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Company, New York (1979)Google Scholar
16. 38.
Ghosh, A., Tsigaridas, E., Descoteaux, M., Comon, P., Mourrain, B., Deriche, R.: A polynomial based approach to extract the maxima of an antipodally symmetric spherical function and its application to extract fiber directions from the orientation distribution function in diffusion MRI. In: Proceedings of the 11th International Conference on Medical Image Computing and Computer Assisted Intervention, pp. 237–248 (2008)Google Scholar
17. 39.
Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)
18. 40.
Gurvits, L.: Classical deterministic complexity of edmonds’ problem and quantum entanglement. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pp. 10–19 (2003)Google Scholar
19. 43.
Harshman, R.A.: Foundations of the PARAFAC procedure: Models and conditions for an “explanatory” multi-modal factor analysis, UCLA Working Papers in Phonetics 16, 1–84 (1970)Google Scholar
20. 52.
Hitchcock, F.L.: The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6, 164–189 (1927)
21. 53.
Hitchcock, F.L.: Multilple invariants and generalized rank of a p-way matrix or tensor. J. Math. Phys. 6, 39–79 (2007)Google Scholar
22. 56.
Jondeau, E., Rockinger, M.: Optimal portfolio allocation under higher moments. Eur. Financ. Manag. 12, 29–55 (2006)
23. 58.
Kannan, R.: Spectral methods for matrices and tensors. In: Proceedings of the 42nd Annual ACM Symposium on Theory of Computing, pp. 1–12 (2010)Google Scholar
24. 60.
Kleniati, P.M., Parpas, P., Rustem, B.: Partitioning procedure for polynomial optimization: Application to portfolio decisions with higher order moments, COMISEF Working Papers Series, WPS-023 (2009)Google Scholar
25. 64.
Kofidis, E., Regalia, Ph.: On the best rank-1 approximation of higher order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23, 863–884 (2002)
26. 65.
Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51, 455–500 (2009)
27. 71.
Lim, L.-H.: Singular values and eigenvalues of tensors: A variantional approach. In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, vol. 1, pp. 129–132 (2005)Google Scholar
28. 76.
Luo, Z.-Q., Zhang, S.: A semidefinite relaxation scheme for multivariate quartic polynomial optimization with quadratic constraints. SIAM J. Optim. 20, 1716–1736 (2010)
29. 77.
Mandelbrot, B.B., Hudson, R.L.: The (Mis)Behavior of Markets: A Fractal View of Risk, Ruin, and Reward. Basic Books, New York (2004)
30. 80.
Markowitz, H.M.: Portfolio selection. J. Finance 7, 79–91 (1952)Google Scholar
31. 90.
Ni, Q., Qi, L., Wang, F.: An eigenvalue method for testing positive definiteness of a multivariate form. IEEE Trans. Autom. Control 53, 1096–1107 (2008)
32. 95.
Peng, L., Wong, M.W.: Compensated compactness and paracommutators. J. London Math. Soc. 62, 505–520 (2000)
33. 96.
Prakash, A.J., Chang, C.-H., Pactwa, T.E.: Selecting a portfolio with skewness: Recent evidence from US, European, and Latin American equity markets. J. Banking Finance 27, 1375–1390 (2003)
34. 98.
Qi, L.: Extrema of a real polynomial. J. Global Optim. 30, 405–433 (2004)
35. 99.
Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)
36. 100.
Qi, L.: Eigenvalues and invariants of tensors. J. Math. Anal. Appl. 325, 1363–1377 (2007)
37. 110.
Sturm, J.F., Zhang, S.: On cones of nonnegative quadratic functions. Math. Oper. Res. 28, 246–267 (2003)
38. 119.
Zhang, T., Golub, G.H.: Rank-one approximation to high order tensors. SIAM J. Matrix Anal. Appl. 23, 534–550 (2001)

© Zhening Li, Simai He,Shuzhong Zhang 2012

## Authors and Affiliations

• Zhening Li
• 1
• Simai He
• 2
• Shuzhong Zhang
• 3
1. 1.Department of MathematicsShanghai UniversityShanghaiChina
2. 2.Department of Management SciencesCity University of Hong KongKowloon TongHong Kong
3. 3.Industrial and Systems EngineeringUniversity of MinnesotaMinneapolisUSA