Infectious Disease Biomarkers: Non-Antibody-Based Host Responses

  • Audrey N. Schuetz


Biomarkers, or biologic markers, are measurable substances which are produced by the body in response to a particular infection, or a recent change in status of the patient. They are in vivo host responses which are indicative of the overall biological state of the patient at the time. According to the Definitions Biomarkers Working Group, a biomarker is “… a characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention” [1]. Usually quantifiable, biomarkers include both antibody- and non-antibody-based host responses. This chapter focuses on the assessment and interpretation of non-antibody-based host responses which are produced by the patient in response to changes in homeostasis due to infection.


Systemic Inflammatory Response Syndrome Lower Respiratory Tract Infection Biphasic Waveform Normal Biologic Process Noninfectious Systemic Inflammatory Response Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95CrossRefGoogle Scholar
  2. 2.
    Stolz D, Smyrnios N, Eggimann P et al (2009) Procalcitonin for reduced antibiotic exposure in ventilator-associated pneumonia: a randomized study. Eur Respir J 34:1364–1375PubMedCrossRefGoogle Scholar
  3. 3.
    Masia M, Gutierrez F, Shum C et al (2005) Usefulness of procalcitonin levels in community-acquired pneumonia according to patients outcome research team pneumonia severity index. Chest 128:2223–2229PubMedCrossRefGoogle Scholar
  4. 4.
    Schuetz P, Christ-Crain M, Thomann R et al (2009) Effect of procalcitonin-based guidelines vs standard guidelines on antibiotic use in lower respiratory tract infections: the ProHOSP randomized controlled trial. JAMA 302:1059–1066PubMedCrossRefGoogle Scholar
  5. 5.
    Chen J, Wang Y, Shen Z, Zhu Z, Song Y, Han R (2011) Early diagnostic value of plasma PCT and BG assay for CRBSI after OLT. Transplant Proc 43:1777–1779PubMedCrossRefGoogle Scholar
  6. 6.
    Tsangaris I, Plachouras D, Kayatha D et al (2009) Diagnostic and prognostic value of procalcitonin among febrile critically ill patients with prolonged ICU stay. BMC Infect Dis 9:213–221PubMedCrossRefGoogle Scholar
  7. 7.
    Chalupa P, Beran O, Herwald H, Kasprikova N, Holub M (2011) Evaluation of potential biomarkers for the discrimination of bacterial and viral infections. Infection 39:411–417. 10.1007/s15010-011-0126-4 PubMedCrossRefGoogle Scholar
  8. 8.
    Chai LA, Netea MG, Teerenstra S et al (2010) Early proinflammatory cytokines and C-reactive protein trends as predictors of outcome in invasive aspergillosis. J Infect Dis 202:1454–1462PubMedCrossRefGoogle Scholar
  9. 9.
    Bihrer V, Friedrich-Rust M, Kronenberger B et al (2001) Serum miR-122 as a biomarker of necroinflammation in patients with chronic hepatitis C virus infection. Am J Gastroenterol 106:1663–1669CrossRefGoogle Scholar
  10. 10.
    Marshall JC, Reinhart K (2009) Biomarkers of sepsis. Crit Care Med 37:2290–2298PubMedCrossRefGoogle Scholar
  11. 11.
    Kibe S, Adams K, Barlow G (2011) Diagnostic and prognostic biomarkers of sepsis in critical care. J Antimicrob Chemother 66:ii33–40PubMedCrossRefGoogle Scholar
  12. 12.
    Dahaba AA, Metzler H (2009) Procalcitonin’s role in the sepsis cascade. Is procalcitonin a sepsis marker or mediator? Minerva Anestesiol 75:447–452PubMedGoogle Scholar
  13. 13.
    Shehabi Y, Seppelt I (2008) Pro/con debate: Is procalcitonin useful for guiding antibiotic decision making in critically ill patients? Crit Care 12:211–216PubMedCrossRefGoogle Scholar
  14. 14.
    Charles PE, Ladoire S, Aho S et al (2008) Serum procalcitonin elevation in critically ill patients at the onset of bacteremia caused by either gram negative or gram positive bacteria. BMC Infect Dis 8:38PubMedCrossRefGoogle Scholar
  15. 15.
    Perren A, Cerutti B, Lepori M et al (2008) Influence of steroids on procalcitonin and C-reactive protein in patients with COPD and community-acquired pneumonia. Infection 36:163–166PubMedCrossRefGoogle Scholar
  16. 16.
    Chan T, Gu F (2011) Early diagnosis of sepsis using serum biomarkers. Expert Rev Mol Diagn 11:487–496PubMedCrossRefGoogle Scholar
  17. 17.
    Cetinkaya M, Ozkan H, Koksal N, Akaci O, Ozgur T (2009) Comparison of serum amyloid A concentrations with those of C-reactive protein and procalcitonin in diagnosis and follow-up of neonatal sepsis in premature infants. J Perinatol 20:225–231CrossRefGoogle Scholar
  18. 18.
    Arnon S, Litmanovitz I (2008) Diagnostic tests in neonatal sepsis. Curr Opin Infect Dis 31:223–227CrossRefGoogle Scholar
  19. 19.
    Deis JN, Creech CB, Estrada CM, Abramo TJ (2010) Procalcitonin as a marker of severe bacterial infection in children in the emergency department. Pediatr Emerg Care 26:51–63PubMedCrossRefGoogle Scholar
  20. 20.
    Becker KL, Snider R, Nylen ES (2008) Procalcitonin assay in systemic inflammation, infection, and sepsis: clinical utility and limitations. Crit Care Med 36:941–952PubMedCrossRefGoogle Scholar
  21. 21.
    Nakamura A, Wada H, Ikejiri M et al (2009) Efficacy of procalcitonin in the early diagnosis of bacterial infections in a critical care unit. Shock 31:586–591PubMedGoogle Scholar
  22. 22.
    Dong H, Shu W, Liu T et al (2010) Targeting procalcitonin with novel murine monoclonal antibodies. Hybridoma 29:189–194PubMedCrossRefGoogle Scholar
  23. 23.
    Limper M, de Kruif MD, Duits AJ, Brandjes DP, van Gorp EC (2010) The diagnostic role of procalcitonin and other biomarkers in discriminating infectious from non-infectious fever. J Infect 60:409–416PubMedCrossRefGoogle Scholar
  24. 24.
    Lacour AG, Gervaix A, Zamora SA et al (2011) Procalcitonin, IL-6, IL-8, IL-1 receptor antagonist and C-reactive protein as identificators of serious bacterial infections in children with fever without localizing signs. Eur J Pediatr 160:95–100CrossRefGoogle Scholar
  25. 25.
    Schuetz P, Christ-Crain M, Huber AR, Muller B (2010) Long-term stability of procalcitonin in frozen samples and comparison of Kryptor and VIDAS automated immunoassays. Clin Biochem 43:341–344PubMedCrossRefGoogle Scholar
  26. 26.
    Manzano S, Bailey B, Girodias JB, Cousineau J, Delvin E, Gervaix A (2009) Comparison of procalcitonin measurement by a semi-quantitative method and an ultra-sensitive quantitative method in a pediatric emergency department. Clin Biochem 42:1557–1560PubMedCrossRefGoogle Scholar
  27. 27.
    Mimoz O, Benoist JF, Edouard AR, Assicot M, Bohuon C, Samii K (1998) Procalcitonin and C-reactive protein during the early posttraumatic systemic inflammatory response syndrome. Intensive Care Med 24:185–188PubMedCrossRefGoogle Scholar
  28. 28.
    Meisner M, Tschaikowsky K, Hutzler A, Schick C, Schuttler J (1998) Postoperative plasma concentrations of procalcitonin after different types of surgery. Intensive Care Med 24:680–684PubMedCrossRefGoogle Scholar
  29. 29.
    Hensel M, Volk T, Docke WD et al (1998) Hyperprocalcitonemia in patients with noninfectious SIRS and pulmonary dysfunction associated with cardiopulmonary bypass. Anesthesiology 89:93–104PubMedCrossRefGoogle Scholar
  30. 30.
    Opatrna S, Klaboch J, Opatrny K Jr et al (2005) Procalcitonin levels in peritoneal dialysis patients. Perit Dial Int 25:470–472PubMedGoogle Scholar
  31. 31.
    Cardelli P, Ferraironi M, Amode R et al (2008) Evaluation of neutrophil CD64 expression and procalcitonin as useful markers in early diagnosis of sepsis. Int J Immunopathol Pharmacol 21:43.49PubMedGoogle Scholar
  32. 32.
    Martini A, Gottin L, Menestrina N, Schweiger V, Simion D, Vincent JL (2010) Procalcitonin levels in surgical patients at risk of candidemia. J Infect 60:425–430PubMedCrossRefGoogle Scholar
  33. 33.
    Kim KE, Han JY (2010) Evaluation of the clinical performance of an automated procalcitonin assay for the quantitative detection of bloodstream infection. Korean J Lab Med 30:153–159PubMedCrossRefGoogle Scholar
  34. 34.
    Galetto-Lacour A, Zamora SA, Gervaix A (2003) Bedside procalcitonin and C-reactive protein tests in children with fever without localizing signs of infection seen in a referral center. Pediatrics 112:1054–1060PubMedCrossRefGoogle Scholar
  35. 35.
    Enguix A, Rey C, Concha A, Medina A, Coto D, Diequez MA (2001) Comparison of procalcitonin with C-reactive protein and serum amyloid for the early diagnosis of bacterial sepsis in critically ill neonates and children. Intensive Care Med 27:211–215PubMedCrossRefGoogle Scholar
  36. 36. Accessed 12 September 2011
  37. 37. Accessed 12 September 2011
  38. 38.
    Morgenthaler NG, Struck J, Fischer-Schulz C, Bergmann A (2002) Sensitive immunoluminometric assay for the detection of procalcitonin. Clin Chem 48:788–790PubMedGoogle Scholar
  39. 39.
    Fioretto JR, Martin JG, Kurokawa CS et al (2010) Comparison between procalcitonin and C-reactive protein for early diagnosis of children with sepsis or septic shock. Inflamm Res 59:581–586PubMedCrossRefGoogle Scholar
  40. 40.
    Schneider HG, Lam QT (2007) Procalcitonin for the clinical laboratory: a review. Pathology 39:383–390PubMedCrossRefGoogle Scholar
  41. 41.
    Reinhart K, Meisner M (2011) Biomarkers in the critically ill patient: procalcitonin. Crit Care Clin 27:253–263PubMedCrossRefGoogle Scholar
  42. 42.
    De Waele JJ, Hoste E, Blot S, Vogelaers D (2008) The value of procalcitonin to diagnose infection in critically ill patient: caveat emptor! [letter to editor]. Crit Care Med 36:3121PubMedCrossRefGoogle Scholar
  43. 43.
    Hotchkiss RS, Karl IE (2003) The pathophysiology and treatment of sepsis. N Engl J Med 348:138–150PubMedCrossRefGoogle Scholar
  44. 44.
    Monneret G, Venet F, Pachot A, Lepap A (2008) Monitoring immune dysfunction in the septic patient: a new skin for the old ceremony. Mol Med 14:64–78PubMedCrossRefGoogle Scholar
  45. 45.
    American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874CrossRefGoogle Scholar
  46. 46.
    Hunter P (2006) Sepsis under siege—a new understanding of sepsis might lead to development of therapies to treat septic shock. EMBO Rep 7:667–669PubMedCrossRefGoogle Scholar
  47. 47.
    Venet F, Guignant C (2011) Monneret. Flow cytometry developments and perspectives in clinical studies: examples in ICU patients. Methods Mol Biol 761:261–275PubMedCrossRefGoogle Scholar
  48. 48.
    Calvano SE, Xiao W, Richards DR et al (2005) A network-based analysis of systemic inflammation in humans. Nature 437:1032–1037PubMedCrossRefGoogle Scholar
  49. 49.
    Lever A, Mackenzie I (2007) Sepsis: definition, epidemiology, and diagnosis. BMJ 335:879–883PubMedCrossRefGoogle Scholar
  50. 50.
    Maubon D, Hamidfar-Roy R, Courby S et al (2010) Therapeutic impact and diagnostic performance of multiplex PCR in patients with malignancies and suspected sepsis. J Infect 61:335–342PubMedCrossRefGoogle Scholar
  51. 51.
    Vincent J-L, Sakr Y, Sprung CL et al (2006) Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 34:344–353PubMedCrossRefGoogle Scholar
  52. 52.
    Davis GH, Bigelow NC (2005) Comparison of neutrophil CD64 expression, manual myeloid immaturity counts, and automated hematology analyzer flags as indicators of infection or sepsis. Lab Hematol 11:137–147PubMedCrossRefGoogle Scholar
  53. 53.
    Giamarellos-Bourboulis EJ, Mega A, Grecka P et al (2002) Procalcitonin: a marker to clearly differentiate systemic inflammatory response syndrome and sepsis in the critically ill patient? Intensive Care Med 28:1351–1356PubMedCrossRefGoogle Scholar
  54. 54.
    Nobre V, Harbarth S, Graf JD, Rohner P, Pugin J (2008) Use of procalcitonin to shorten antibiotic treatment duration in septic patients: a randomised trial. Am J Respir Crit Care Med 177:498–505PubMedCrossRefGoogle Scholar
  55. 55.
    Pierrakos C, Vincent JL (2010) Sepsis biomarkers: a review. Crit Care 14:R15PubMedCrossRefGoogle Scholar
  56. 56.
    O’Grady NP, Barie PS, Bartlett JG et al (2008) Guidelines for evaluation of new fever in critically ill adult patients: 2008 update from the American College of Critical Care Medicine and the Infectious Diseases Society of America. Crit Care Med 36:1330–1349PubMedCrossRefGoogle Scholar
  57. 57.
    Povoa P, Coehlo L, Almeida E et al (2005) C-reactive protein as a marker of infection in critically ill patients. Clin Microbiol Infect 11:101–108PubMedCrossRefGoogle Scholar
  58. 58.
    Schmit X, Vincent JL (2008) The time course of blood C-reactive protein concentrations in relation to the response to initial antimicrobial therapy in patients with sepsis. Infection 36:213–219PubMedCrossRefGoogle Scholar
  59. 59.
    Clyne B, Olshaker JS (1999) The C-reactive protein. J Emerg Med 17:1019–1025PubMedCrossRefGoogle Scholar
  60. 60.
    Uzzan B, Cohen R, Nicolas P, Cucherat M, Perret GY (2006) Procalcitonin as a diagnostic test for sepsis in critically ill adults and after surgery or trauma: a systematic review and meta-analysis. Crit Care Med 34:1996–2003PubMedCrossRefGoogle Scholar
  61. 61.
    Tang BMP, Eslick GD, Craig JC, McLean AS (2007) Accuracy of procalcitonin for sepsis diagnosis in critically ill patients: systematic review and meta-analysis. Lancet Infect Dis 7:210–217PubMedCrossRefGoogle Scholar
  62. 62.
    Giamarellos-Bourboulis EJ, Tsangaris I, Kanni T et al (2011) Procalcitonin as an early indicator of outcome in sepsis: a prospective observational study. J Hosp Infect 77:58–63PubMedCrossRefGoogle Scholar
  63. 63.
    Sakr Y, Sponholz C, Tuche F, Brunkhorst F, Reinhart K (2008) The role of procalcitonin in febrile neutropenic patients: review of the literature. Infection 36:396–407PubMedCrossRefGoogle Scholar
  64. 64.
    Schultz MJ, Determann RM (2008) PCT and sTREM-1: the markers of infection in critically ill patients? Med Sci Monit 14:RA241–247PubMedGoogle Scholar
  65. 65.
    Gilbert DN (2010) Use of plasma procalcitonin levels as an adjunct to clinical microbiology. J Clin Microbiol 48:2325–2329PubMedCrossRefGoogle Scholar
  66. 66.
    Tang H, Huang T, Jing J, Shen H, Cui W (2009) Effect of procalcitonin-guided treatment in patients with infections: a systematic review and meta-analysis. Infection 37:497–507PubMedCrossRefGoogle Scholar
  67. 67.
    Schuetz P, Chiappa V, Briel M, Greenwald JL (2011) Procalcitonin algorithms for antibiotic therapy decisions: a systematic review of randomized controlled trials and recommendations for clinical algorithms. Arch Intern Med 171:1322–1331PubMedCrossRefGoogle Scholar
  68. 68.
    Reinhart K, Hartog CS (2010) Biomarkers as a guide for antimicrobial therapy. Int J Antimicrob Agents 36S:S17–S21CrossRefGoogle Scholar
  69. 69.
    Agarwal R, Schwartz DN (2011) Procalcitonin to guide duration of antimicrobial therapy in intensive care units: a systematic review. Clin Infect Dis 53:379–387PubMedCrossRefGoogle Scholar
  70. 70.
    Bouadma L, Luyt CE, Tubach F et al (2010) Use of procalcitonin to reduce patients’ exposure to antibiotics in intensive care units (PRORATA trial): a multicentre randomised control trial. Lancet 375:463–474PubMedCrossRefGoogle Scholar
  71. 71.
    Jensen JU, Hein L, Lundgren B et al (2011) Procalcitonin-guided interventions against infections to increase early appropriate antibiotics and improve survival in the intensive care units: a randomized trial. Crit Care Med 39:2048–2058PubMedCrossRefGoogle Scholar
  72. 72.
    Muller B, Becker KL, Schachinger H et al (2000) Calcitonin precursors are reliable markers of sepsis in a medical intensive care unit. Crit Care Med 28:977–983PubMedCrossRefGoogle Scholar
  73. 73.
    Rey C, Los Arcos M, Concha A et al (2007) Procalcitonin and C-reactive protein as markers of systemic inflammatory response syndrome severity in critically ill children. Intensive Care Med 33:477–484PubMedCrossRefGoogle Scholar
  74. 74.
    Claeys R, Vinken S, Spapen H et al (2002) Plasma procalcitonin and C-reactive protein in acute septic shock: clinical and biological correlates. Crit Care Med 30:757–762PubMedCrossRefGoogle Scholar
  75. 75.
    Luzzani A, Polati E, Dorizzi R, Rungatscher A, Pavan R, Merlini A (2003) Comparison of procalcitonin and C-reactive protein as markers of sepsis. Crit Care Med 31:1737–1741PubMedCrossRefGoogle Scholar
  76. 76.
    Daniels JM, Schoorl M, Snijders D et al (2010) Procalcitonin versus C-reactive protein as predictive markers of response to antibiotic therapy in acute exacerbations of COPD. Chest 138:1108–1115PubMedCrossRefGoogle Scholar
  77. 77.
    Gaini S, Koldkjaer OG, Pedersen C, Pedersen SS (2006) Procalcitonin, lipopolysaccharide-binding protein, interleukin-6 and C-reactive protein in community-acquired infections and sepsis: a prospective study. Crit Care 10:R53PubMedCrossRefGoogle Scholar
  78. 78.
    Koeze J, Hendrix MG, van den Bergh FA, Brouwer RM, Zijlstra JG (2011) In critically ill patients the procalcitonin level can be misleading. Crit Care 15:422PubMedCrossRefGoogle Scholar
  79. 79.
    Van den Bruel A, Thompson MJ, Haj-Hassan T et al (2011) Diagnostic value of laboratory tests in identifying serious infections in febrile children: systematic review. BMJ 342:d3082PubMedCrossRefGoogle Scholar
  80. 80.
    Lannergard A, Friman G, Ewald U, Lind L, Larsson A (2005) Serum amyloid A (SAA) protein and high-sensitivity C-reactive protein (hsCRP) in healthy newborn infants and healthy young through elderly adults. Acta Paediatr 94:1198–1202PubMedCrossRefGoogle Scholar
  81. 81.
    Vincent JL, Donadello K, Schmit X (2011) Biomarkers in the critically ill patient: C-reactive protein. Crit Care Clin 27:241–251PubMedCrossRefGoogle Scholar
  82. 82.
    Shine B, De Beer FC, Pepys MB (1981) Solid phase radioimmunoassay for human C-reactive protein. Clin Chim Acta 117:12–23CrossRefGoogle Scholar
  83. 83.
    Raitakari M, Mansikkaniemi K, Marniemi J, Viikari JS, Raitakari OT (2005) Distribution and determinants of serum high-sensitive C-reactive protein in a population of young adults: the cardiovascular risk in young Finns study. J Intern Med 258:428–434PubMedCrossRefGoogle Scholar
  84. 84.
    Pepys MB, Hirschfield GM (2003) C-reactive protein: a critical update. J Clin Invest 111:1805–1812PubMedGoogle Scholar
  85. 85.
    Zeitoun AAH, Gad SS, Attia FM, Abu Maziad AS, Bell EF (2010) Evaluation of neutrophilic CD64, interleukin 10 and procalcitonin as diagnostic markers of early- and late-onset neonatal sepsis. Scand J Infect Dis 42:299–305PubMedCrossRefGoogle Scholar
  86. 86.
    Reinhart K, Karzai W, Meisner M (2000) Procalcitonin as a systemic inflammatory response to infection. Intensive Care Med 26:1193–1200PubMedCrossRefGoogle Scholar
  87. 87.
    Povoa P, Almeida E, Moreira P et al (1998) C-reactive protein as an indicator of sepsis. Intensive Care Med 24:1052–1056PubMedCrossRefGoogle Scholar
  88. 88.
    Silvestre JP, Coelho LM, Povoa PM (2010) Impact of fulminant hepatic failure in C-reactive protein? J Crit Care 25(657):e7–e12PubMedGoogle Scholar
  89. 89.
    Lobo SM, Lobo FR, Bota DP (2003) C-reactive protein levels correlate with mortality and organ failure in critically ill patients. Chest 123:2043–2049PubMedCrossRefGoogle Scholar
  90. 90.
    Oude Nijhuis CS, Vellenga E, Daenen SM et al (2003) Lipopolysaccharide-binding protein: a possible diagnostic marker for gram-negative bacteremia in neutropenic cancer patients. Intensive Care Med 29:2157–2161PubMedCrossRefGoogle Scholar
  91. 91.
    Petrikkos GL, Christofilopoulou SA, Tentolouris NK, Charvalos EA, Kosmidis CJ, Daikos GL (2005) Value of measuring serum procalcitonin, C-reactive protein, and mannan antigens to distinguish fungal from bacterial infections. Eur J Clin Microbiol Infect Dis 24:272–275PubMedCrossRefGoogle Scholar
  92. 92.
    Kajiya T, Orihara K, Hamasaki S et al (2008) Toll-like receptor 2 expression level on monocytes in patients with viral infections: monitoring infection severity. J Infect 57:249–259PubMedCrossRefGoogle Scholar
  93. 93.
    Quint JK, Donaldson GC, Goldring JJ, Baghai-Ravary R, Hurst JR, Wedzicha JA (2010) Serum IP-10 as a biomarker of human rhinovirus infections at exacerbation of COPD. Chest 137:812–822PubMedCrossRefGoogle Scholar
  94. 94.
    Charles PE, Kus E, Aho S et al (2009) Serum procalcitonin for the early recognition of nosocomial infection in the critically ill patients: a preliminary report. BMC Infect Dis 9:49–58PubMedCrossRefGoogle Scholar
  95. 95.
    Luyt CE, Combes A, Reynaud C et al (2008) Usefulness of procalcitonin for the diagnosis of ventilator-associated pneumonia. Intensive Care Med 34:1434–1440PubMedCrossRefGoogle Scholar
  96. 96.
    Dallas J, Brown SM, Hock K et al (2011) Diagnostic utility of plasma procalcitonin for nosocomial pneumonia in the intensive care unit setting. Respir Care 56:412–419PubMedCrossRefGoogle Scholar
  97. 97.
    Cuquemelle E, Soulis F, Villers D et al (2011) Can procalcitonin help identify associated bacterial infection in patients with severe influenza pneumonia? A multicentre study. Intensive Care Med 37:796–800PubMedCrossRefGoogle Scholar
  98. 98.
    Vouloumanou EK, Plessa E, Karageorgopoulos DE, Mantadakis E, Falagas ME (2011) Serum procalcitonin as a diagnostic marker for neonatal sepsis: a systematic review and meta-analysis. Intensive Care Med 37:747–762PubMedCrossRefGoogle Scholar
  99. 99.
    Briel M, Schuetz P, Mueller B et al (2008) Procalcitonin-guided antibiotic use vs a standard approach for acute respiratory tract infections in primary care. Arch Intern Med 168:2000–2007PubMedCrossRefGoogle Scholar
  100. 100.
    Agapakis DI, Tsantilas D, Psarris P et al (2010) Coagulation and inflammation biomarkers may help predict the severity of community-acquired pneumonia. Respirology 15:796–803PubMedCrossRefGoogle Scholar
  101. 101.
    Christ-Crain M, Jaccard-Stolz D, Bingisser R et al (2004) Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: cluster-randomised, single-blinded intervention trial. Lancet 363:600–607PubMedCrossRefGoogle Scholar
  102. 102.
    Christ-Crain M, Stolz D, Bingisser R et al (2006) Procalcitonin guidance of antibiotic therapy in community-acquired pneumonia: a randomized trial. Am J Resp Crit Care Med 174:84–93PubMedCrossRefGoogle Scholar
  103. 103.
    Burkhardt O, Ewig S, Haagen U et al (2010) A simple procalcitonin-guided strategy results in safe reductions of antibiotic use in patients with symptoms of acute respiratory tract infections in primary care. Eur Resp J 36:601–607CrossRefGoogle Scholar
  104. 104.
    Stolz D, Christ-Crain M, Bingisser R et al (2007) Antibiotic treatment of exacerbations of COPD: a randomized, controlled trial comparing procalcitonin-guidance with standard therapy. Chest 131:9–19PubMedCrossRefGoogle Scholar
  105. 105.
    Cetinkaya M, Ozkan H, Koksal N, Akaci O, Ozgur T (2010) The efficacy of serial serum amyloid A measurements for diagnosis and follow-up of necrotizing enterocolitis in premature infants. Pediatr Surg Int 26:835–841PubMedCrossRefGoogle Scholar
  106. 106.
    Arnon S, Litmanovitz I, Regev RH, Bauer S, Shainkin-Kestenbaum R, Dolfin R (2007) Serum amyloid A: an early and accurate marker of neonatal early-onset sepsis. J Perinatol 27:297–302PubMedGoogle Scholar
  107. 107.
    Schumann RR, Zweigner J (1999) A novel acute-phase marker: lipopolysaccharide binding protein (LBP). Clin Chem Lab Med 37:271–274PubMedCrossRefGoogle Scholar
  108. 108.
    Pavcnik-Arnol M, Hojker S, Derganc M (2007) Lipopolysaccharide-binding protein, lipopolysaccharide, and soluble CD14 in sepsis of critically ill neonates and children. Intensive Care Med 33:1025–1032PubMedCrossRefGoogle Scholar
  109. 109.
    Mierzchala M, Krzystek-Korpacka M, Gamian A, Durek G (2011) Quantitative indices of dynamics in concentrations of lipopolysaccharide-binding protein (LBP) as prognostic factors in severe sepsis/septic shock patients—comparison with CRP and procalcitonin. Clin Biochem 44:357–363PubMedCrossRefGoogle Scholar
  110. 110.
    Dempfle CE, Lorenz S, Smolinksi M et al (2004) Utility of activated partial thromboplastin time waveform analysis for identification of sepsis and overt disseminated intravascular coagulation in patients admitted to a surgical intensive care unit. Crit Care Med 32:520–524PubMedCrossRefGoogle Scholar
  111. 111.
    Chopin N, Floccard B, Sobas F et al (2006) Activated partial thromboplastin time waveform analysis: a new tool to detect infection? Crit Care Med 34:1654–1660PubMedCrossRefGoogle Scholar
  112. 112.
    Gamble JR, Drew J, Trezise L et al (2000) Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions. Circ Res 87:603–607PubMedCrossRefGoogle Scholar
  113. 113.
    Giamarellos-Bourboulis EJ (2011) Angiopoietins in sepsis: biomarkers or effector molecules? Crit Care Med 39:890–891PubMedCrossRefGoogle Scholar
  114. 114.
    LaRosa SP, Opal SM (2011) Biomarkers: the future. Crit Care Clin 27:407–419PubMedCrossRefGoogle Scholar
  115. 115.
    Mofarrahi M, Nouh T, Qureshi S, Guillot L, Mayahi D, Hussain SN (2008) Regulation of angiopoietin expression by bacterial lipopolysaccharide. Am J Physiol Lung Cell Mol Physiol 294:L955–L963PubMedCrossRefGoogle Scholar
  116. 116.
    Giuliano JS, Lahni PM, Harmon K et al (2007) Admission angiopoietin levels in children with septic shock. Shock 28:650–654PubMedGoogle Scholar
  117. 117.
    Orfanos SE, Kotanidou A, Glynos C et al (2007) Angiopoietin-2 is increased in severe sepsis: correlation with inflammatory mediators. Crit Care Med 35:199–206PubMedCrossRefGoogle Scholar
  118. 118.
    Giamarellos-Bourboulis EJ, Kanellakopoulou K, Pelekanou A et al (2008) Kinetics of angiopoietin-2 in serum of multi-trauma patients: correlation with patient severity. Cytokine 44:310–313CrossRefGoogle Scholar
  119. 119.
    Van der Heijden M, Pickkers P, van Nieuw Amerongen GP et al (2009) Circulating angiopoietin-2 levels in the course of septic shock: Relation with fluid balance, pulmonary dysfunction and mortality. Intensive Care Med 35:1567–1574PubMedCrossRefGoogle Scholar
  120. 120.
    Ricciuto DR, dos Santos CC, Hawkes M et al (2011) Angiopoietin-1 and angiopoietin-2 as clinically informative prognostic biomarkers of morbidity and mortality in severe sepsis. Crit Care Med 39:702–710PubMedCrossRefGoogle Scholar
  121. 121.
    Minhas N, Xue M, Fukudome K, Jackson CJ (2010) Activated protein C utilizes the angiopoietin/Tie2 axis to promote endothelial barrier function. FASEB J 24:873–881PubMedCrossRefGoogle Scholar
  122. 122.
    Page AV, Koth M, McGeer A, Low DE, Kain KC, Liles WC (2011) Systemic dysregulation on angiopoietin-1/2 in streptococcal toxic shock syndrome. Clin Infect Dis 52:e157–e161PubMedCrossRefGoogle Scholar
  123. 123.
    Berdowska A, Zwirska-Korczala K (2001) Neopterin measurement in clinical diagnosis. J Clin Pharm Ther 26:319–329PubMedCrossRefGoogle Scholar
  124. 124.
    Ip M, Rainer TH, Lee N et al (2007) Value of serum procalcitonin, neopterin, and C-reactive protein in differentiating bacterial from viral etiologies in patients presenting with lower respiratory tract infections. Diagn Microbiol Infect Dis 59:131–136PubMedCrossRefGoogle Scholar
  125. 125.
    Prat C, Dominguez J, Andreo F et al (2006) Procalcitonin and neopterin correlation with aetiology and severity of pneumonia. J Infect 52:169–177PubMedCrossRefGoogle Scholar
  126. 126.
    Lacoma A, Prat C, Andreo F et al (2011) Value of procalcitonin, C-reactive protein, and neopterin in exacerbations of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 6:157–169PubMedGoogle Scholar
  127. 127.
    Gibot S, Cravoisy A, Kolopp-Sarda MN et al (2005) Time-course of sTREM (soluble triggering receptor expressed on myeloid cells)-1, procalcitonin, and C-reactive protein concentrations during sepsis. Crit Care Med 33:792–796PubMedCrossRefGoogle Scholar
  128. 128.
    Gibot S, Le Renard PE, Bollaert PE et al (2005) Surface triggering receptor expressed on myeloid cells-1: expression patterns in septic shock. Intensive Care Med 31:594–597PubMedCrossRefGoogle Scholar
  129. 129.
    Gibot S, Kolopp-Sarda MN, Bene MC et al (2004) Plasma level of a triggering receptor expressed on myeloid cells-1: its diagnostic accuracy in patients with suspected sepsis. Ann Intern Med 141:9–15PubMedGoogle Scholar
  130. 130.
    Gibot S, Cravoisy A, Levy B, Bene MC, Faure G, Bollaert PE (2004) Soluble triggering receptor expressed on myeloid cells and the diagnosis of pneumonia. N Engl J Med 350:451–458PubMedCrossRefGoogle Scholar
  131. 131.
    Yilmaz G, Koksal I, Karahan SC, Mentese A (2011) The diagnostic and prognostic significance of soluble urokinase plasminogen activator receptor in systemic inflammatory response syndrome. Clin Biochem 44:1227–1230  10.1016/j.clinbiochem.2011.07.006 PubMedCrossRefGoogle Scholar
  132. 132.
    Kofoed K, Andersen O, Kronborg G et al (2007) Use of plasma C-reactive protein, procalcitonin, neutrophils, macrophage migration inhibitory factor, soluble urokinase-type plasminogen activator receptor, and soluble triggering receptor expressed on myeloid cells-1 in combination to diagnose infections: a prospective study. Crit Care 11:R38PubMedCrossRefGoogle Scholar
  133. 133.
    Eugen-Olsen J (2011) SuPAR—a future risk marker in bacteremia. J Intern Med 270:29–31PubMedCrossRefGoogle Scholar
  134. 134.
    Jabaudon M, Futier E, Roszyk L et al (2011) Soluble form of the receptor for advanced glycation end products is a marker of acute lung injury but not of severe sepsis in critically ill patients. Crit Care Med 39:480–488PubMedCrossRefGoogle Scholar
  135. 135.
    Creagh-Brown BC, Burke-Gaffney A, Evans TW (2011) sRAGE: a useful biomarker in acute lung injury? Crit Care Med 39:589–590PubMedCrossRefGoogle Scholar
  136. 136.
    Calfee CS, Ware LB, Eisner MD et al (2008) Plasma receptor for advanced glycation end products and clinical outcomes in acute lung injury. Thorax 63:1083–1089PubMedCrossRefGoogle Scholar
  137. 137.
    Bopp C, Hofer S, Weitz J et al (2008) sRAGE is elevated in septic patients and associated with patients outcome. J Surg Res 147:79–83PubMedCrossRefGoogle Scholar
  138. 138.
    Groselj-Grenc M, Ihan A, Pavcnik-Arnol M, Kopitar AN, Gmeiner-Stopar T, Derganc M (2009) Neutrophil and monocyte CD64 indexes, lipopolysaccharide-binding protein, procalcitonin and C-reactive protein in sepsis of critically ill neonates and children. Intensive Care Med 35:1950–1958PubMedCrossRefGoogle Scholar
  139. 139.
    Davis BH, Olsen SH, Ahmad E, Bigelow NC (2006) Neutrophil CD64 is an improved indicator of infection or sepsis in emergency department patients. Arch Pathol Lab Med 130:654–661PubMedGoogle Scholar
  140. 140.
    Nuutila J (2010) The novel applications of the quantitative analysis of neutrophil cell surface FcγRI (CD64) to the diagnosis of infectious and inflammatory diseases. Curr Opin Infect Dis 23:268–274PubMedCrossRefGoogle Scholar
  141. 141.
    Nuutila J, Hohenthal U, Laitinen L et al (2007) Simultaneous quantitative analysis of FcγRI (CD64) expression on neutrophils and monocytes: a new, improved way to detect infections. J Immunol Methods 328:189–200PubMedCrossRefGoogle Scholar
  142. 142.
    Hoffmann JJ (2009) Neutrophil CD64: a diagnostic marker for infection and sepsis. Clin Chem Lab Med 47:903–916PubMedCrossRefGoogle Scholar
  143. 143.
    Docke WD, Hoflich C, Davis KA et al (2005) Monitoring temporary immunodepression by flow cytometric measurement of monocytic HLA-DR expression: a multicenter standardized study. Clin Chem 51:2341–2347PubMedCrossRefGoogle Scholar
  144. 144.
    Venet F, Tissot S, Debard AL et al (2007) Decreased monocyte human leukocyte antigen-DR expression after severe burn injury: correlation with severity and secondary septic shock. Crit Care Med 35:1910–1917PubMedCrossRefGoogle Scholar
  145. 145.
    Landelle C, Lepape A, Voirin N et al (2010) Low monocyte human leukocyte antigen-DR is independently associated with nosocomial infections after septic shock. Intensive Care Med 36:1859–1966PubMedCrossRefGoogle Scholar
  146. 146.
    Lukaszewicz AC, Grienay M, Resche-Rigon M et al (2009) Monocytic HLA-DR expression in intensive care patients: interest for prognosis and secondary infection prediction. Crit Care Med 37:2746–2752PubMedCrossRefGoogle Scholar
  147. 147.
    Volk HD, Reinke P, Krausch D et al (1996) Monocyte deactivation-rationale for a new therapeutic strategy in sepsis. Intensive Care Med 22:S474–S481PubMedCrossRefGoogle Scholar
  148. 148.
    Shozushima T, Takahashi G, Matsumoto N, Kojika M, Okamura Y, Endo S (2011) Usefulness of presepsin (sCD14-ST) measurements as a marker for the diagnosis and severity of sepsis that satisfied diagnostic criteria of systemic inflammatory response syndrome. J Infect Chemother 17:764–769 10.1007/s10156-011-0254-x PubMedCrossRefGoogle Scholar
  149. 149.
    Yaegashi Y, Shirakawa K, Sato N et al (2005) Evaluation of a newly identified soluble CD14 subtype as a marker for sepsis. J Infect Chemother 11:234–238PubMedCrossRefGoogle Scholar
  150. 150.
    Pinksy MR, Vincent JL, Deviere J, Alegre M, Kahn RJ, Dupont E (1993) Serum cytokine levels in human septic shock. Relation to multiple-system organ failure and mortality. Chest 103:565–575CrossRefGoogle Scholar
  151. 151.
    Harbarth S, Holeckova K, Froidevaux C et al (2001) Diagnostic value of procalcitonin, interleukin-6 and interleukin-8 in critically ill patients with suspected sepsis. Am J Resp Crit Care Med 164:396–402PubMedGoogle Scholar
  152. 152.
    Panacek EA, Marshall JC, Albertson TE et al (2004) Efficacy and safety of the monoclonal anti-TNF antibody F(ab’)2 fragment afelimomab in patients with severe sepsis stratified by IL-6 level. Crit Care Med 32:2173–2182PubMedGoogle Scholar
  153. 153.
    Ng PC, Li K, Chui KM et al (2007) IP-10 is an early diagnostic marker for identification of late-onset bacterial infection in preterm infants. Pediatr Res 61:93–98PubMedCrossRefGoogle Scholar
  154. 154.
    Kontoyiannis DP (2011) Are serum cytokines sensitive and specific enough to prognosticate in aspergillosis? J Infect Dis 203:1503PubMedCrossRefGoogle Scholar
  155. 155.
    Guignant C, Voirin N, Venet F et al (2009) Assessment of pro-vasopressin and pro-adrenomedullin as predictors of 28-day mortality in septic shock patients. Intensive Care Med 35:1859–1867PubMedCrossRefGoogle Scholar
  156. 156.
    Albrich WC, Dusemund F, Ruegger K et al (2011) Enhancement of CURB65 score with proadrenomedullin (CURB65-A) for outcome prediction in lower respiratory tract infections: Derivation of a clinical algorithm. BMC Infect Dis 11:112PubMedCrossRefGoogle Scholar
  157. 157.
    Tan XF, Wu SS, Li SP, Chen Z, Chen F (2011) Alpha-1 antitrypsin is a potential biomarker for hepatitis B. Virol J 8:274PubMedCrossRefGoogle Scholar
  158. 158.
    Shi WW, Lin A, Xu DP et al (2011) Plasma soluble human leukocyte antigen-G expression is a potential clinical biomarker in patients with hepatitis B virus infection. Hum Immunol 72:1068–1073 10.1016/j.humimm.2011.06.012 PubMedCrossRefGoogle Scholar
  159. 159.
    Lee PS, Drager LR, Stossel TP, Moore FD, Rogers SO (2006) Relationship of plasma gelsolin levels to outcomes in critically ill surgical patients. Ann Surg 243:399–403PubMedCrossRefGoogle Scholar
  160. 160.
    Sumino KC, Walter MJ, Mikols CL et al (2010) Detection of respiratory viruses and the associated chemokine responses in serious acute respiratory illness. Thorax 65:639–644PubMedCrossRefGoogle Scholar
  161. 161.
    Wang J, Wang PP, Xiang GJ, Hu XB (2010) Relationship between the expression of IP-10 and IP-10 mRNA in peripheral blood and HBV DNA level in patients with cirrhosis. Hepatobiliary Pancreat Dis Int 9:280–286PubMedGoogle Scholar
  162. 162.
    Lagging M, Romero AI, Westin J et al (2006) IP-10 predicts viral response and therapeutic outcome in difficult-to-treat patients with HCV genotype 1 infection. Hepatology 44:1617–1625PubMedCrossRefGoogle Scholar
  163. 163.
    Bagdasaryan R, Zhou Z, Tierno B, Rosenman D, Xu D (2007) Neutrophil VCS parameters are superior indicators for acute infection. Lab Hematol 13:12–16PubMedCrossRefGoogle Scholar
  164. 164.
    Charafeddine KM, Youssef AM, Mahfouz RA, Sarieddine DS, Daher RT (2011) Comparison of neutrophil volume distribution width to C-reactive protein and procalcitonin as a proposed new marker of acute infection. Scand J Infect Dis 43:777–784PubMedCrossRefGoogle Scholar
  165. 165.
    Venet F, Chung CS, Monneret G et al (2008) Regulatory T cell populations in sepsis and trauma. J Leukoc Biol 83:523–535PubMedCrossRefGoogle Scholar
  166. 166.
    Remick DG (2007) Pathophysiology of sepsis. Am J Pathol 170:1435–1444PubMedCrossRefGoogle Scholar
  167. 167.
    Monneret G, Debard AL, Venet F et al (2003) Marked elevation of human circulating CD4  +  CD25+ regulatory T cells in sepsis-induced immunoparalysis. Crit Care Med 31:2068–2071PubMedCrossRefGoogle Scholar
  168. 168.
    Venet F, Chung CS, Kherouf H et al (2009) Increased circulating regulatory T cells (CD4(+)CD25(+)CD127(−)) contribute to lymphocyte anergy in septic shock patients. Intensive Care Med 35:678–686PubMedCrossRefGoogle Scholar
  169. 169.
    Sherwin C, Broadbent R, Young S et al (2008) Utility of interleukin-12 and interleukin-10 in comparison with other cytokines and acute-phase reactants in the diagnosis of neonatal sepsis. Am J Perinatol 25:629–636PubMedCrossRefGoogle Scholar
  170. 170.
    Rintala EM, Aittoniemi J, Laine S, Nevalainen TJ, Nikoskelainen J (2001) Early identification of bacteremia by biochemical markers of systemic inflammation. Scand J Clin Lab Invest 61:523–530PubMedCrossRefGoogle Scholar
  171. 171.
    Nupponen I, Andersson S, Jarvenpaa AL, Kautiainen H, Repo H (2001) Neutrophil CD11b expression and circulating interleukin-8 as diagnostic markers for early-onset neonatal sepsis. Pediatrics 108:E12PubMedCrossRefGoogle Scholar
  172. 172.
    Liaudat S, Dayer E, Praz G, Bille J, Troillet N (2001) Usefulness of procalcitonin serum level for the diagnosis of bacteremia. Eur J Clin Microbiol Dis 20:524–527CrossRefGoogle Scholar
  173. 173.
    Zakariah AN, Cozzi SM, Van Nuffelen M, Clausi CM, Pradier O, Vincent JL (2008) Combination of biphasic transmittance waveform with blood procalcitonin levels for diagnosis of sepsis in acutely ill patients. Crit Care Med 36:1507–1512PubMedCrossRefGoogle Scholar
  174. 174.
    Deitcher SR, Eisenberg PR (1993) Elevated concentrations of cross-linked fibrin degradation products in plasma. An early marker of gram-negative bacteremia. Chest 103:1107–1112PubMedCrossRefGoogle Scholar
  175. 175.
    Bozza FA, Salluh JI, Japiassu AM et al (2007) Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis. Crit Care 11:R49PubMedCrossRefGoogle Scholar
  176. 176.
    Kofoed K, Schneider UV, Scheel T, Andersen O, Eugen-Olsen J (2006) Development and validation of a multiplex add-on assay for sepsis biomarkers using xMAP technology. Clin Chem 52:1284–1293PubMedCrossRefGoogle Scholar
  177. 177.
    Shapiro NI, Trzeciak S, Hollander JE et al (2009) A prospective multicenter derivation of a biomarker panel to assess risk of organ dysfunction, shock, and death in emergency department patients with suspected sepsis. Crit Care Med 37:96–104PubMedCrossRefGoogle Scholar
  178. 178.
    Cobb JP, Laramie JM, Stormo GD et al (2002) Sepsis gene expression profiling: murine splenic compared with hepatic responses determined by using complementary DNA microarrays. Crit Care Med 30:2711–2721PubMedCrossRefGoogle Scholar
  179. 179.
    Tang BM, McLean AS, Dawes IW, Huang SJ, Lin RC (2009) Gene-expression profiling of peripheral blood mononuclear cells in sepsis. Crit Care Med 37:882–888PubMedCrossRefGoogle Scholar
  180. 180.
    Sutherland A, Thomas M, Brandon RA (2011) Development and validation of a novel molecular biomarker diagnostic test for the early detection of sepsis. Crit Care 15:R149PubMedCrossRefGoogle Scholar
  181. 181.
    Paugam-Burtz C, Albuquerque M, Baron G et al (2010) Plasma proteome to look for diagnostic biomarkers of early bacterial sepsis after liver transplantation: a preliminary study. Anesthesiology 112:926–935PubMedCrossRefGoogle Scholar
  182. 182.
    Service RF (2008) Proteomics. Will biomarkers take off at last? Science 321:1760PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Departments of Pathology & Laboratory Medicine, and MedicineWeill Cornell Medical College/The NewYork-Presbyterian HospitalNew YorkUSA

Personalised recommendations