Skip to main content

Roles as Ultradian Oscillators of the Cells Biological Clock

  • Chapter
  • First Online:
ECTO-NOX Proteins

Abstract

The homodimeric, growth-related and time-keeping constitutive hydroquinone oxidase ENOX1 of the eukaryotic cell surface capable of oxidizing extracellular NAD(P)H and intracellular hydroquinones exhibits properties of the ultradian driver of the biological 24-h circadian clock by exhibiting a complex 2 + 3 set of oscillations with a period length of 24 min (repeats 60 times over 24 h). The oscillations require bound copper, are recapitulated by aqueous solutions of copper salts and appear to derive from 30 to 40 s periodic variations in the ratios of ortho and para nuclear spins of the paired hydrogen atoms of the elongated octahedral structure of the ENOX1 protein-bound copperII hexahydrates. By functioning in the manner of limit oscillators, these 30–40 s oscillations appear to generate the 24-min periodicity in the manner of a carrier wave. The orthopara oscillations are highly synchronous through self-generated very low frequency electromagnetic fields which also serve to phase ENOX1/copperII oscillations. The synchronized populations of water molecules give rise to oscillatory electromagnetic fields that apparently are perceived by adjacent water molecules to create a collectively coherent synchronous system capable of extending over very long distances. The period length of the ENOX oscillations is temperature independent and entrained by light, melatonin, lithium, and caffeine. COS cells transformed with specific ENOX variants where specific cysteine codons are replaced by alanine codons yield circadian periods of 22, 34, or 42 h respectively, based on activity of glyceraldehyde-3-dehydrogenase in response to ENOX oscillations with period lengths of 22, 36, or 42 min. That the oscillations result from physical rather than chemical events accounts for the temperature independence of the period length of clock-related phenomena. Also, the period length of both the ENOX and copperII oscillations in D2O is increased to 30 min in keeping with the 30-h circadian day exhibited by organisms grown in deuterium oxide. An opportunity to link the ultradian ENOX oscillation to downstream activation of clock genes may be provided by responses of transcriptional factors to levels of NADH and especially to NAD+ generated by ENOX oscillations. Adverse effects resulting from chronic disturbances or disruptions of circadian rhythms by repeated rephrasing of the ENOX cycle may include an increased risk of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe M, Herzog ED, Block GD (2000) Lithium lengthens the circadian period of individual suprachiasmatic nucleus neurons. Neuroreport 11:3261–3264

    Article  CAS  PubMed  Google Scholar 

  • Andrade RP, Palmeirim I, Bajanca F (2007) Molecular clocks underlying vertebrate embryo segmentation: a 10-year-old hairy-go-round. Birth Defects Res C Embryo Today 81:65–83

    Article  CAS  PubMed  Google Scholar 

  • Atkinson M, Kripke DF, Wolf SR (1975) Autohythmometry in manic-depressives. Chronobiologia 2:325–335

    CAS  PubMed  Google Scholar 

  • Auderset G, Morré DJ, Williamson FA, Hess K, Greppin H (1980) Effect of light on auxin binding, cell fractionation, and ultrastructure of etiolated soybean hypocotyls. Bot Gaz 141:149–156

    Article  CAS  Google Scholar 

  • Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6:544–556

    Article  CAS  PubMed  Google Scholar 

  • Benedetti F, Barbini B, Campori E, Fulgosi MC, Pontiggia A, Colombo C (2001) Sleep phase advance and lithium to sustain the antidepressant effect of total sleep deprivation in bipolar depression: new findings supporting the internal coincidence model? J Psychiatr Res 35:323–329

    Article  CAS  PubMed  Google Scholar 

  • Bersuker IB (1984) Modern chemistry. Plenum Press, New York

    Google Scholar 

  • Binhi VN (2002) Magnetobiology: underlying physical problems. Academic, San Diego

    Google Scholar 

  • Binhi VN, Stepanov EV (2000) Tunable diode-laser spectroscopy of the para- and ortho-water vapour as a tool for investigation of metastable states of liquid water. In: Kostarakis P, Stavrolakis P (eds) Millennium international workshop on biological effects of electromagnetic fields, Heraklion, Crete, Greece, 17–20 Oct, pp 153–154

    Google Scholar 

  • Bordone L, Guarente L (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 6:298–305

    Article  CAS  PubMed  Google Scholar 

  • Brown FA Jr (1977) Geographic orientation, time and mudmail phototaxis. Biol Bull 152:311–324

    Article  Google Scholar 

  • Brown FA Jr, Chow CK (1973) Lunar correlated variations in water uptake by bean seeds. Biol Bull 145:265–278

    Article  Google Scholar 

  • Bruce VG, Pittendrigh CS (1960) Temperature independence in a unicellular “clock”. J Cell Comp Physiol 56:25–31

    Article  CAS  Google Scholar 

  • Bunning E, Baltes J (1963) Zur Wirkung von schwerem Wasser au die endogene Tagersrhythmik. Naturwissenschaften 50:622

    Article  Google Scholar 

  • Buntkowsky G, Walaszek B, Adamczyk A, Xu Y, Limbach H-H, Chaudret B (2006) Mechanism of nuclear spin initiated para-H2 to ortho-H2 conversion. Phys Chem Chem Phys 8:1929–1935

    Article  CAS  PubMed  Google Scholar 

  • Byus CV, Kartun K, Pieper S, Adey WR (1988) Increased ornithine decarboxylase activity in cultured cells exposed to low energy modulated microwave fields and phorbol ester tumor promoters. Cancer Res 48:4222–4226

    CAS  PubMed  Google Scholar 

  • Canelas AB, van Gulik WM, Heijnen JJ (2008) Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions. Biotechnol Bioeng 100:734–743

    Article  CAS  PubMed  Google Scholar 

  • Cárdenas L, McKenna ST, Kunkel JG, Hepler PK (2006) NAD(P)H oscillates in pollen tubes and is correlated with tip growth. Plant Physiol 142:1460–1468

    Article  PubMed  CAS  Google Scholar 

  • Chakkalakal DA, Mollner TJ, Bogard MR, Fritz ED, Novak JR, McGuire MH (1999) Magnetic field induced inhibition of human osteosarcoma cells treated with adriamycin. Cancer Biochem Biophys 17:89–98

    CAS  PubMed  Google Scholar 

  • Chalko CJ, Morré DM, Morré DJ (2000) Cell surface NADH oxidase activity of brine shrimp oscillates with a period of 25 min and is entrained by light. Life Sci 66:2499–2507

    CAS  PubMed  Google Scholar 

  • Cheung P, Allis CD, Sassone-Corsi P (2000) Signaling to chromatin through histone modifications. Cell 103:263–271

    Article  CAS  PubMed  Google Scholar 

  • Chueh P-J, Morré DM, Morré DJ (2002a) A site-directed mutagenesis analysis of tNOX functional domains. Biochim Biophys Acta 1594:74–83

    Article  CAS  PubMed  Google Scholar 

  • Chueh P-J, Kim C, Cho N, Morré DM, Morré DJ (2002b) Molecular cloning and characterization of a tumor-associated, growth-related and time-keeping hydroquinone (NADH) oxidase (NOX) of the HeLa cell surface. Biochemistry 41:3732–3741

    Article  CAS  PubMed  Google Scholar 

  • Chueh P-J, Wu L-Y, Morré DM, Morré DJ (2004) tNOX is both necessary and sufficient as a cellular target for the anticancer actions of capsaicin and the green tea catechin (−)-epigallocatechin-3-gallate. Biofactors 20:235–249

    PubMed  Google Scholar 

  • De Luca T, Morré DM, Zhao H, Morré DJ (2005) NAD+/NADH and/or CoQ/CoQH2 ratios from plasma membrane electron transport may determine ceramide and sphingosine-1-phosphate levels accompanying G1 arrest and apoptosis. Biofactors 25:43–60

    Article  PubMed  Google Scholar 

  • Del Giudice E, Spinetti PR, Tedeschi AL (2010) Water dynamics at the root of metamorphosis in living organisms. Water12 2:566–586

    Article  CAS  Google Scholar 

  • Dowse HB, Palmer JD (1972) The chronomutagenic effect of deuterium oxide on the period and entrainment of a biological rhythm. Biol Bull 143:513–524

    Article  CAS  PubMed  Google Scholar 

  • Dunlap JC (1996) Genetics and molecular analysis of circadian rhythms. Annu Rev Genet 30:579–601

    Article  CAS  PubMed  Google Scholar 

  • Dunlap JC (1999) Molecular basis for circadian clocks. Cell 26:271–286

    Article  Google Scholar 

  • Edmunds LN Jr (1988) Cellular and molecular basis of biological clocks. New York, Berlin, 497pp

    Google Scholar 

  • Emsley JM, Feeney J, Sutcliffe LH (1965) High resolution nuclear magnetic resonance spectroscopy, vol 1. Pergamon Press, Oxford

    Google Scholar 

  • Engelmann W (1972) Lithium slows down the Kalanchoe clock. Z Naturforsch 27B:477

    Google Scholar 

  • Engelmann W (1973) A slowing down of circadian rhythms by lithium ions. Z Naturforsch 28:733–736

    CAS  Google Scholar 

  • Enright JT (1997) Heavy water slows biological timing processes. Z Vergl Physiol 72:1–16

    Article  Google Scholar 

  • Fedrowitz M, Westermann J, Loscher W (2002) Magnetic field exposure increases cell proliferation but does not affect melatonin levels in the mammary gland of female Sprague Dawley rats. Cancer Res 62:356–1363

    Google Scholar 

  • Filipponi A, D’Angelo P, Pavel NV, Di Ciecco A (1994) Triplet correlations in the hydration shell of aquaions. Chem Phys Lett 225:150–155

    Article  CAS  Google Scholar 

  • Fu L, Lee CC (2003) The circadian clock: pacemaker and tumour suppressor. Nat Rev Cancer 3:350–361

    Article  CAS  PubMed  Google Scholar 

  • Fulton JL, Hoffman MM, Darab JG, Palmer BJ, Stein EA (2000) Copper (I) and copper (II) coordination structure under hydrothermal conditions at 325°C: an X-ray absorption fine structure and molecular dynamics study. J Phys Chem A 104:11651–11663

    Article  CAS  Google Scholar 

  • Goodman R, Chizmadzhev Y, Shirley-Henderson A (1993) Electromagnetic fields and cells. J Cell Biochem 51:436–441

    CAS  PubMed  Google Scholar 

  • Grunstein M (1997) Histone acetylation in chromatin structure and transcription. Nature 389:349–352

    Article  CAS  PubMed  Google Scholar 

  • Gudkov SV, Bruskov VI, Astashev ME, Chernikov AV, Yaguzhinsky LS, Zakharov SD (2011) Oxygen-dependent auto-oscillations of water luminescence triggered by the 1264 nm radiation. J Phys Chem B 115(23):7693–7698

    Article  CAS  PubMed  Google Scholar 

  • Harmer S (2010) Plant biology in the fourth dimension. Plant Physiol 154:467–470

    Article  CAS  PubMed  Google Scholar 

  • Henshaw DL (2002) Does our electricity distribution system pose a serious risk to public health? Med Hypotheses 59:39–51

    Article  CAS  PubMed  Google Scholar 

  • Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, Corsi P (2007) CLOCK mediated acetylation of BMAL1 controls circadian function. Nature 450:1086–1090

    Article  CAS  PubMed  Google Scholar 

  • Hofmann K, Gunderoth-Palmowski M, Wiedenmann G, Engelmann W (1978) Further evidence for period lengthening effect of Li+ on circadian rhythms. Z Naturforsch 33C:231–234

    CAS  Google Scholar 

  • Iancu I, Olmer A, Strous RD (2007) Caffeinism: history, clinical features, diagnosis, and treatment. In: Smith BD, Gupta U, Gupta BS (eds) Caffeine and activation theory. CRC Press, Boca Raton, pp 331–347

    Google Scholar 

  • Imai SI (2010) “Clocks” in the NAD world: NAD as a metabolic oscillator for the regulation of metabolism and aging. Biochim Biophys Acta 1804:1584–1590

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Morré DM, Morré DJ (2006) A role for copper in biological time-keeping. J Inorg Biochem 100:2140–2149

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Gorenstein NM, Morré DM, Morré DJ (2008) Molecular cloning and characterization of a candidate human growth-related and time-keeping constitutive cell surface hydroquinone (NADH) oxidase. Biochemistry 47:14028–14038

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Layman S, Morré DM, Morré DJ (2005) Fourier transform infrared and circular dichroism spectroscopic analysis underlie tNOX periodic oscillations. Dose Response 3:391–413

    Article  CAS  Google Scholar 

  • King DP, Takahashi JS (2000) Molecular genetics of circadian rhythms in mammals. Annu Rev Neurosci 29:713–742

    Article  Google Scholar 

  • Kripke DF, Wyborney VG (1980) Lithium slows rat circadian activity rhythms. Life Sci 26:1319–1321

    Article  CAS  PubMed  Google Scholar 

  • Kripke DF, Mullaney DJ, Atkinson ML, Wolf S (1978) Circadian rhythm disorder in manic-depressives. Biol Psychiatry 13:335–351

    CAS  PubMed  Google Scholar 

  • Kripke DF, Judd LL, Hubbard B, Janowsky DS, Huey LF (1979) The effect of lithium carbonate on the circadian rhythm of sleep in normal human subjects. Biol Psychiatry 14:545–548

    CAS  PubMed  Google Scholar 

  • Kromkowski J, Hignite H, Morré DM, Morré DJ (2008) Response to lithium of a cell surface ECTO-NOX protein with time-keeping characteristics. Neurosci Lett 438:121–125

    Article  CAS  PubMed  Google Scholar 

  • Kummer JT (1962) Ortho-para hydrogen conversion by metal surfaces at 21°K. J Phys Chem 66:1715

    Article  CAS  Google Scholar 

  • Lange S, Richard D, Viergutz T, Kriehuber R, Weiss DG, Simko M (2002) Alterations in the cell cycle and in the protein level of cyclin D1, p21Clp1, and p16lNK4a after exposure to 50 Hz MF in human cells. Radiat Environ Biophys 41:131–137

    CAS  PubMed  Google Scholar 

  • Langmesser S, Tallone T, Bordon A, Busconi S, Albrecht U (2008) Interaction of circadian clock proteins PER2 and CRY with BMAL1 and CLOCK. BMC Mol Biol 9:41

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM (2001) Posttranslational mechanisms regulate the mammalian circadian clock. Cell 128:707–719

    Google Scholar 

  • Lesauter J, Silver R (1993) Heavy water lengthens the period of free-running rhythms in lesioned hamsters bearing SCN grafts. Physiol Behav 54:599–604

    Article  CAS  PubMed  Google Scholar 

  • Levi F (2000) Marked 24-h rest/activity rhythms are associated with better quality of life, better response, and longer survival in patients with metastatic colorectal cancer and good performance status. Clin Cancer Res 6:3038–3045

    PubMed  Google Scholar 

  • Levi F (2002) From circadian rhythms to cancer chemotherapeutics. Chronobiol Int 25:459–461

    Google Scholar 

  • Levi F, Schibler U (2007) Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol 47:593–628

    Article  CAS  PubMed  Google Scholar 

  • Li N, Cai Y, Zuo X, Xu S, Zhang Y, Chan P, Zhang YA (2008) Suprachiasmatic nucleus slices induce molecular oscillations in fibroblasts. Biochem Biophys Res Commun 377:1179–1184

    Article  CAS  PubMed  Google Scholar 

  • Lin SJ, Guarente L (2003a) Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol 15:241–246

    Article  CAS  PubMed  Google Scholar 

  • Lin SJ, Guarente L (2003b) Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease. Curr Opin Cell Biol 15:241–246

    Article  CAS  PubMed  Google Scholar 

  • Lloyd D, Stupfel M (1991) The occurrence and functions of ultridian rhythms (review). Biol Rev Camb Philos Soc 66:275–299

    Article  CAS  PubMed  Google Scholar 

  • Lloyd D, Edward SW, Fry JC (1982) Temperature-compensated oscillations in respiration and protein content in synchronous cultures of Acanthamoeba castellanii. Proc Natl Acad Sci U S A 79:3785–3788

    Article  CAS  PubMed  Google Scholar 

  • Lobyshev VI, Shikhlinskaya RE, Ryzhikov BD (1999) Experimental evidence for intrinsic luminescence of water. J Mol Liquids 82:3–81

    Article  Google Scholar 

  • Lowrey PL, Takshashi JS (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 5:407–441

    Article  CAS  PubMed  Google Scholar 

  • Mailliet F, Ferry G, Vella F, Berger S, Cogé F, Chomarat P, Mallet C, Guénin SP, Guillaumet G, Viaud-Massuard M-C, Yous S, Delagrange P, Boutin JA (2005) Characterization of the melatoninergic MT3 binding site on the NRH:quinone oxidoreductase 2 enzyme. Biochem Pharmacol 71:74–88

    Article  CAS  PubMed  Google Scholar 

  • Matanoski GM (1995) Electromagnetic fields: biological interactions and mechanisms. In: Blank M (ed) Advances in chemistry, vol 250. American Chemical Society, Washington, DC, pp 157–190

    Google Scholar 

  • McClung CA (2007) Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther 114:222–232

    Article  CAS  PubMed  Google Scholar 

  • McDaniel M, Sulzman FM, Hastings JW (1974) Heavy water slows the Gonyaulax clock: a test of the hypothesis that D2O affects circadian oscillations by diminishing the apparent temperature. Proc Natl Acad Sci U S A 71:4389–4391

    Article  CAS  PubMed  Google Scholar 

  • McKenna ST, Kunkel JG, Bosch M, Rounds CM, Vidali L, Winship LJ, Hepler PK (2009) Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes. Plant Cell 21(3):026–3040

    Google Scholar 

  • Milenkl YY, Sibileva RN, Strzhemechny MA (1997) Natural ortho-para conversion rate in liquid and gaseous hydrogen. J Low Temp Phys 107:77–82

    Article  Google Scholar 

  • Minorsky PV (2007) Solar-terrestrial effects on bean seed imbibition. Poster Abstracts. Am Soc Plant Biol 186

    Google Scholar 

  • Mormont MC, Levi F (1997) Circadian-system alterations during cancer process: a review. Int J Cancer 70:241–247

    Article  CAS  PubMed  Google Scholar 

  • Mormont MC, Waterhouse J, Bleuzen P, Giacchetti S, Jami A, Bogdan A, Lellouch J, Misset JL, Touitou Y, Levi F (2000) Marked 24-h rest/activity rhythms are associated with better quality of life, better response, and longer survival in patients with metastatic colorectal cancer and good performance status. Clin Cancer Res 6:3038–3045

    CAS  PubMed  Google Scholar 

  • Morré DJ, Morré DM (1998) NADH oxidase activity of soybean plasma membranes oscillates with a temperature compensated period of 24 min. Plant J 16:277–284

    Article  Google Scholar 

  • Morré DJ, Morré DM (2003a) Cell surface NADH oxidases (ECTO-NOX proteins) with roles in cancer, cellular time-keeping, growth, aging and neurodegenerative disease. Free Radic Res 37:795–808

    Article  PubMed  CAS  Google Scholar 

  • Morré DM, Morré DJ (2003b) Specificity of coenzyme Q inhibition of an aging-related cell surface NADH oxidase (ECTO-NOX) that generates superoxide. Biofactors 18:33–43

    Article  PubMed  Google Scholar 

  • Morré DJ, Morré DM (2003e) The plasma membrane-associated NADH oxidase (ECTO-NOX) of mouse skin responds to blue light. J Photochem Photobiol B 70:7–12

    Article  PubMed  CAS  Google Scholar 

  • Morré DJ, Morré DM (2008b) ENOX proteins, copper hexahydrate-based ultradian oscillators of the cells’ biological clock. In: Lloyd D, Rossi EL (eds) Ultradian rhythms from molecules to mind: a new vision of life. Springer, New York, pp 43–84

    Chapter  Google Scholar 

  • Morré DJ, Morré DM (2012a) Water in biological time keeping. In: Pepper DW, Brebbia CA (eds) Water and society. WIT Press, Southampton, Boston, pp 13–23

    Google Scholar 

  • Morré DJ, Morré DM (2012b) Early detection: an opportunity for cancer prevention through early intervention. In: Cancer prevention. InTech, Vienna, pp

    Google Scholar 

  • Morré DJ, Gomez-Rey ML, Schramke C, Em O, Lawler J, Hobeck J, Morré DM (1999a) Use of dipyridyl-dithio substrates to measure directly the protein disulfide-thiol interchange activity of the auxin stimulated NADH: protein disulfide reductase (NADH oxidase) of soybean plasma membranes. Mol Cell Biochem 200:7–13

    Article  PubMed  Google Scholar 

  • Morré DJ, Morré DM, Penel C, Greppin H (1999b) NADH oxidase periodicity of spinach leaves synchronized by light. Int J Plant Sci 160:855–860

    Article  PubMed  Google Scholar 

  • Morré DJ, Pogue R, Morré DM (2001a) Soybean cell enlargement oscillates with a temperature-compensated period length of ca. 24 min. In Vitro Cell Dev Biol Plant 37:19–23

    Article  PubMed  Google Scholar 

  • Morré DJ, Chueh P-J, Pletcher J, Tang X, Wu L-Y, Morré DM (2002a) Biochemical basis for the biological clock. Biochemistry 41:11941–11945

    Article  PubMed  CAS  Google Scholar 

  • Morré DJ, Lawler J, Wang S, Keenan TW, Morré DM (2002b) Entrainment in solution of an oscillating NADH oxidase activity from the bovine milk fat globule membrane with a temperature-compensated period length suggestive of an ultradian time-keeping (clock) function. Biochim Biophys Acta 1559:10–20

    Article  PubMed  Google Scholar 

  • Morré DJ, Penel C, Greppin H, Morré DM (2002c) The plasma membrane-associated NADH oxidase of spinach leaves responds to blue light. Int J Plant Sci 613:543–547

    Article  Google Scholar 

  • Morré DJ, Heald S, Coleman J, Orczyk J, Jiang Z, Morré DM (2007b) Structural observations of time dependent oscillatory behavior of CuIICl2 solutions measured via extended X-ray absorption fine structure. J Inorg Biochem 100:715–726

    Article  CAS  Google Scholar 

  • Morré DJ, Jiang Z, Marjanovic M, Orczyk J, Morré DM (2008b) Response of the regulatory behavior of copperII-containing ECTO-NOX proteins and CuIICl2 in solution to electromagnetic fields. J Inorg Biochem 102:1812–1818

    Article  PubMed  CAS  Google Scholar 

  • Morré DJ, Orczyk J, Hignite H, Kim C (2008d) Regular oscillatory behavior of aqueous solutions of CuII salts related to effects on equilibrium dynamics of ortho/para hydrogen spin isomers of water. J Inorg Biochem 102:260–267

    Article  PubMed  CAS  Google Scholar 

  • Mumma MJ, Weaver HA, Larson HP (1987) The ortho-para ratio of water vapor in comet P/Halley. Astron Astrophys 187:419–424

    CAS  Google Scholar 

  • Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705

    Article  CAS  PubMed  Google Scholar 

  • Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P (2008) The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134:329–340

    Article  CAS  PubMed  Google Scholar 

  • Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324:654–657

    Article  CAS  PubMed  Google Scholar 

  • Palmer JD, Dowse HB (1969) Preliminary findings on the effect of D2O on the period of circadian activity rhythms. Abstract. Biol Bull 137:388

    Google Scholar 

  • Pershin SM (2005) Two-liquid water. Phys Wave Phenom 13:192–208

    Google Scholar 

  • Pershin SM (2006) Harmonic oscillations of the concentration of H-bonds in liquid water. Laser Phys 16:114–1190

    Google Scholar 

  • Pichard GE, Zucker I (1986) Influence of deuterium oxide on circadian activity rhythms of hamsters: role of the suprachiasmatic nuclei. Brain Res 376:149–154

    Article  Google Scholar 

  • Pittendrigh CS, Caldarola PC, Cosbey ES (1973) A differential effect of heavy water on temperature-dependent and temperature-compensated aspects of circadian system of Drosophila pseudoobscura. Proc Natl Acad Sci U S A 70:2037–2041

    Article  CAS  PubMed  Google Scholar 

  • Pogue R, Morré DM, Morré DJ (2000) CHO cell enlargement oscillates with a temperature-compensated period of 24 minutes. Biochim Biophys Acta 1498:44–51

    Article  CAS  PubMed  Google Scholar 

  • Pollack GH, Clegg J (2008) Unexpected linkage between unstirred layers, exclusion zones, and water. In: Pollack GH, Chin WC (eds) Phase transitions in cell biology. Springer, Berlin, pp 143–152

    Chapter  Google Scholar 

  • Potekhin SA, Khusainova RS (2005) Spin-dependent absorption of water molecules. Biophys Chem 118:84–87

    Article  CAS  PubMed  Google Scholar 

  • Ramsey L, Marcheva B, Kohsaka A, Bass J (2007) The clockwork of metabolism. Annu Rev Nutr 29:219–240

    Article  CAS  Google Scholar 

  • Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee C, Takahashi JS, Imai S, Bass J (2009) Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324:651–654

    Article  CAS  PubMed  Google Scholar 

  • Richter CP (1977) Heavy water as a tool for study of the forces that control length of period of the 24-hour clock of the hamster. Proc Natl Acad Sci U S A 74:1295–1299

    Article  CAS  PubMed  Google Scholar 

  • Rounds CM, Hepler PK, Fuller SJ, Winship LJ (2010) Oscillatory growth in lily pollen tubes does not require aerobic energy metabolism. Plant Physiol 152:736–746

    Article  CAS  PubMed  Google Scholar 

  • Ruggiero M, Bottaro DP, Liguri G, Gulisano M, Peruzzi B, Pacini S (2004) 0.2 T magnetic field inhibits angiogenesis in chick embryo chorioallantoic membrane. Bioelectromagnetics 25:390–396

    Article  CAS  PubMed  Google Scholar 

  • Rutter J, Reick M, Wu LC, McKnight SL (2001) Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293:510–514

    Article  CAS  PubMed  Google Scholar 

  • Santini MT, Rainaldi G, Ferrante A, Indovina PL, Vacchia P, Donelli G (2003) Effects of a 50 Hz sinusoidal magnetic field on cell adhesion molecule expression in two human osteosarcoma cell lines (MG-63 and Saos-2). Bioelectromagnetics 24:327–338

    Article  CAS  PubMed  Google Scholar 

  • Sauve AA, Wolberger C, Schramm VL, Boeke JD (2006) The biochemistry of sirtuins. Annu Rev Biochem 75:435–465

    Article  CAS  PubMed  Google Scholar 

  • Savitz DA (1995) Overview of occupational exposure to electric and magnetic fields and cancer: advancements in exposure assessment. Environ Health Perspect 103:69–74

    PubMed  Google Scholar 

  • Schemhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Colditz GA (2001) Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. J Natl Cancer Inst 93:1563–1568

    Article  Google Scholar 

  • Schemhammer ES, Kroenke CH, Laden F, Hankinson SE (2006) Night work and risk of breast cancer. Epidemiology 17:108–111

    Article  Google Scholar 

  • Schibler U, Naef F (2005) Cellular oscillators: rhythmic gene expression and metabolism. Curr Opin Cell Biol 17:223–229

    Article  CAS  PubMed  Google Scholar 

  • Sephton SE, Sapolsky RM, Kraemer HC, Spegal D (2000) Diurnal cortisol rhythm as a predictor of breast cancer survival. J Natl Cancer Inst 92:994–1000

    Article  CAS  PubMed  Google Scholar 

  • Shifley ET, Cole SE (2007) The vertebrate segmentation clock and its role in skeletal birth defects. Birth Defects Res C Embryo Today 81:121–133

    Article  CAS  PubMed  Google Scholar 

  • Shinohara ML, Loros JJ, Dunlap JC (1998) Glyceraldehyde-3-phosphate dehydrogenase is regulated on a daily basis by the circadian clock. J Biol Chem 273:446–452

    Article  CAS  PubMed  Google Scholar 

  • Simko M, Richard D, Kriehuber R, Weiss GG (2001) Micronucleus induction in Syrian hamster embryo cells following exposure to 50 Hz magnetic fields, benzo(a)pyrene, and TPA in vitro. Mutat Res 22:43–50

    Google Scholar 

  • Sisken BF, Walker J, Orgel M (1993) Prospects on clinical applications of electrical stimulation for nerve regeneration. J Cell Biochem 52:404–409

    Article  Google Scholar 

  • Spruyt E, Verbelen JP, DeGruf JA (1987) Expression of circasepan and circammal rhythmicity in the inhibition of dry stored seeds. Plant Physiol 84:707–710

    Article  CAS  PubMed  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  CAS  PubMed  Google Scholar 

  • Struhl K (1998) Histone acetylation and transcriptional regulatory mechanisms. Genes Dev 12:599–606

    Article  CAS  PubMed  Google Scholar 

  • Suter RB, Rawson KS (1968) Circadian activity rhythm of the deer mouse, Peromyscus: effect of deuterium oxide. Science 160:1011–1014

    Article  CAS  PubMed  Google Scholar 

  • Tan DX, Manchester LC, Terron MP, Flores LJ, Tamura H, Reiter RJ (2007) Melatonin as a naturally occurring co-substrate of quinone reductase-2, the putative MT3 melatonin membrane receptor: hypothesis and significance. J Pineal Res 43:317–320

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Chueh P-J, Jiang Z, Layman S, Martin B, Kim C, Morré DM, Morré DJ (2010) Essential role of copper in the activity and regular periodicity of a recombinant, tumor-associated, cell surface, growth-related and time-keeping hydroquinone (NADH) oxides with protein disulfide thiol interchange activity (ENOX2). J Bioenerg Biomembr 42:355–360

    Article  CAS  PubMed  Google Scholar 

  • Thun-Battersby S, Mevissen M, Löscher W (1999) Exposure of Sprague–Dawley rats to a 50-Hertz, 100-microTesla magnetic field for 27 weeks facilitates mammary tumorigenesis in the 7,1 2-dimethylbenz[a]-anthracene model of breast cancer. Cancer Res 59:3627–3633

    CAS  PubMed  Google Scholar 

  • Tikhonov VI, Volkov AA (2002) Separation of water into its ortho and para isomers. Science 296:2363

    Article  CAS  PubMed  Google Scholar 

  • Ueda HR, Matsumoto A, Kawamura M, Iino M, Teiichi T, Hashimoto S (2002) Genome-wide transcriptional orchestration of circadian rhythms in Drosophila. J Biol Chem 277:14048–14052

    Article  CAS  PubMed  Google Scholar 

  • Wade PA, Wolffe AP (1997) Histone acetyltransferases in control. Curr Biol 7:R82–R84

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Pogue R, Morré DM, Morré DJ (2001) NADH oxidase activity (NOX) and enlargement of HeLa cells oscillate with two different temperature-compensated period lengths of 22 and 24 minutes corresponding to different NOX forms. Biochim Biophys Acta 1539:192–204

    Article  CAS  PubMed  Google Scholar 

  • Wartenberg DA, Stapleton CP (1998) Risk of breast cancer is also increased among retired US female airline cabin attendants. Br Med J 316:1902–1916

    Article  CAS  Google Scholar 

  • Wehr TA, Goodwin FK (1983) Biological rhythms in manic-depressive illness. In: Wehr TA, Goodwin EK (eds) Circadian rhythms in psychiatry. Boxwood, Pacific Grove, CA, pp 129–184

    Google Scholar 

  • Welsh DK, Moore-Ede MC (1990) Lithium lengthens circadian period in a diurnal primate, Saimiri sciureus. Biol Psychiatry 28:117–126

    Article  CAS  PubMed  Google Scholar 

  • Wigner EZ (1933) Mechanism of nuclear spin initiated para-H2 to ortho-H2 conversion. Phys Chem B 23:28

    Google Scholar 

  • Williamson FA, Morré DJ, Jaffe MJ (1975) Association of phytochrome with rough-surfaced endoplasmic reticulum fractions from soybean hypocotyls. Plant Physiol 56:738–743

    Article  CAS  PubMed  Google Scholar 

  • Wolf FI, Torsello A, Tedesco B, Fasanella S, Boninsegna A, D’Ascenzo M, Grassi C, Azzena GB, Cittadini A (2005) 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism. Biochim Biophys Acta 1743:120–129

    Article  CAS  PubMed  Google Scholar 

  • Workman JL, Kingston RE (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 67:545–579 [Abstract]

    Google Scholar 

  • Yang XJ, Seto E (2008) The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and man. Nat Rev Mol Cell Biol 9:206–218

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Wang J, Klein PS, Lazar MA (2006) Nuclear receptor Rev-erbá is a critical lithium-sensitive component of the circadian clock. Science 311:1002–1005

    Article  CAS  PubMed  Google Scholar 

  • Yoshizawa H, Tsuchiya T, Mizoe H, Ozeki H, Kanao S, Yomori H, Sakane C, Hasebe S, Motomura T, Yamakawa T, Mizuno F, Hirose H, Otaka Y (2002) No effect of extremely low-frequency magnetic field observed on cell growth or initial response of cell proliferation in human cancer cell lines. Bioelectromagnetics 23:355–368

    Article  PubMed  Google Scholar 

  • Young MW, Kay SA (2001) Time zones: a comparative genetics of circadian clocks. Nat Rev Genet 2:702–715

    Article  CAS  PubMed  Google Scholar 

  • Zhao L-J, Subramanian T, Show Y, Chinnadurai G (2006) Acetylation by p300 regulates nuclear localization and function of the transcriptional factor CtBP2. J Biol Chem 281:4183–4189

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morré, D.J., Morré, D.M. (2012). Roles as Ultradian Oscillators of the Cells Biological Clock. In: ECTO-NOX Proteins. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3958-5_6

Download citation

Publish with us

Policies and ethics