Skip to main content

Fourier Techniques in X-Ray Structure Determination

  • Chapter
  • First Online:
Structure Determination by X-ray Crystallography
  • 93k Accesses

Abstract

We have reached the stage where we can consider how to attack the solving of a crystal structure. After the earliest trial and error determinations in the 1920s with very simple and highly symmetrical structures, it was found that the application of Fourier series, initially in one dimension, led to the electron density function, in which peak maxima in the electron density corresponded to atomic positions. As we have seen in the previous chapters, it is necessary to have the phases of the structure factors for a Fourier synthesis to be carried out meaningfully. One way in which phase information may be obtained is through the Patterson function of vector density, a function of interatomic vectors in the crystal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If the forward direction of this vector is used, the structure obtained would, in general, be inverted through the origin. This does not happen with the example under study because the molecule possesses only twofold symmetry.

  2. 2.

    See Bibliography, Buerger (1959).

  3. 3.

    In the original paper, the origin in Imma was chosen on a center of symmetry displaced by \( \tfrac{1}{4} \), \( \tfrac{1}{4} \), \( \tfrac{1}{4} \) from this origin.

  4. 4.

    In the work of Duwell and Baenziger [6], the positions listed are 8 (i), with x = 0.186 and z = 0.089, each being \( \tfrac{1}{4} \) minus the value given here.

  5. 5.

    See Bibliography, Buerger (1959).

  6. 6.

    The resolution of a protein X-ray analysis is loosely defined as d min, where d min = λ/2 sin θ max, θ max being the maximum Bragg angle associated with the analysis: initially θ max may be temporarily restricted in order to limit the work required, but at the expense of the quality of the electron density image.

  7. 7.

    Single Isomorphous Replacement with Anomalous Scattering.

  8. 8.

    These omissions give rise to the proportionality sign.

  9. 9.

    Lipson H, Beevers CA (1936) Proc Phys Soc 48:772.

References

  1. Reynolds CD et al (1974) J Cryst Mol Struct 4:213

    Article  CAS  Google Scholar 

  2. Cruickshank DWJ (1957) Acta Crystallogr 10:504 [This study used the non-standard space group P21/a, equivalent to P21/c, with a and c interchanged and b changed to −b]

    Google Scholar 

  3. Keeling RO (1957) Acta Crystallogr 10:209

    Article  CAS  Google Scholar 

  4. Glusker JP et al (1968) Acta Crystallogr B24:359

    Google Scholar 

  5. Ladd M, Palmer R (2003) Structure determination by X-ray crystallography, 4th edn. Kluwer Academic/Plenum, New York

    Book  Google Scholar 

  6. Palmer HT, Palmer RA (1969) Acta Crystallogr B25:1090

    Google Scholar 

  7. Duwell EJ, Baenziger NC (1995) Acta Crystallogr 8:705

    Article  Google Scholar 

  8. Woolfson MM (1956) Acta Crystallogr 9:804

    Article  CAS  Google Scholar 

  9. Sim GA (1960) Acta Crystallogr 13:511

    Article  Google Scholar 

  10. Brünger AT (1992) Nature 355:472

    Article  Google Scholar 

  11. Phenix Tutorial8. http://www.phenix-online.org/documentation/refinement-examples.htm

  12. Wilson AJC (1976) Acta Crystallogr A32:994

    Google Scholar 

  13. Cruickshank DWJ (1949) Acta Crystallogr 2:154

    Article  CAS  Google Scholar 

  14. idem. ibid. (1999) D55:583

    Google Scholar 

  15. Blow DM (2002) Acta Crystallogr D58:792

    CAS  Google Scholar 

  16. Ladd MFC (1967) Z Kristallogr 124:64

    Article  CAS  Google Scholar 

  17. Wilson AJC (1950) Acta Crystallogr 3:397–398

    Article  Google Scholar 

  18. Rossman MG, Blow DM (1961) Acta Crystallogr 14:641

    Article  Google Scholar 

  19. Blow DM, Crick FHC (1959) Acta Crystallogr 12:794

    Article  CAS  Google Scholar 

  20. Dickerson RE, Weintzierl JE, Palmer RA (1968) Acta Crystallogr B24:997

    Google Scholar 

  21. Hamilton WC (1965) Acta Crystallogr 18:502

    Article  CAS  Google Scholar 

  22. Rogers D (1981) Acta Crystallogr A37:734

    CAS  Google Scholar 

  23. Flack HD (1983) Acta Crystallogr A39:876

    CAS  Google Scholar 

  24. http://en.wikipedia.org/wiki/Stereochemistry

  25. Palmer RA, Potter BS, Palmer HT, Frampton CS (2007) J Chem Cystallogr 37:1

    Article  CAS  Google Scholar 

  26. Palmer RA, Potter BS, Leach MJ, Jenkins TC, Chowdhry BZ (2010) Med Chem Commun 1:45

    Article  CAS  Google Scholar 

  27. Barnes CL (1997) J Appl Crystallogr 30:568 [Based on ORTEP-III (v 1.0.3) by CK Johnson and MN Burnett]

    Google Scholar 

  28. Merrit EA, Bacon DJ (1997) Methods Enzymol 277:505 [Implemented in WinGX (qv)]

    Google Scholar 

  29. Tanczos AC, Palmer RA, Potter BS, Saldanha JW, Howlin BJ (2004) Comput Biol Chem 28(5–6):375

    Article  CAS  Google Scholar 

  30. Spencer J et al (2012) CrystEngComm 14(20), 6441

    Google Scholar 

  31. Peerdeman AF, Bijvoet JM (1956) Acta Crystallogr 9:1012

    Article  CAS  Google Scholar 

  32. Oszlányi G and Sütü A (2004) Acta Cryst A60:134

    Google Scholar 

  33. Palatinus L (2004) Acta Cryst A60:604

    Google Scholar 

  34. http://escher.epfl.ch/eCrystallography/ (Sect. 7.4); http://user.web.psi.ch/powder08/downloads/Hinrichsen-Charge%20flipping.pdf

  35. Baerlocher Ch et al (2007) Science 315:1113

    Google Scholar 

  36. McCusker LB, Baerlocher Ch (2007) Zeit für Kristallogr 222:47

    Google Scholar 

  37. Sisak D et al (2012) J Appl Crystallogr (in press)

    Google Scholar 

  38. Van Smaalen S (2007) Incommensurate Crystallography, Oxford University Press

    Google Scholar 

  39. Ladd MFC (1968) Z Kristallogr 126:147

    Article  Google Scholar 

  40. Ladd MFC (1998) Introduction to physical chemistry, 3rd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

Bibliography: Introductory Structure Analysis

  • Bragg WL (1949) A general survey, vol I, The crystalline state. Bell, London

    Google Scholar 

  • Hahn T (ed) (2002) International tables for crystallography, vol A, 5th edn. Kluwer Academic, Dordrecht

    Google Scholar 

  • Henry NFM, Lonsdale K (eds) (1965) International tables for X-ray crystallography, vol I. Kynoch Press, Birmingham

    Google Scholar 

General Structure Analysis

  • Buerger MJ (1959) Vector space. Wiley, New York

    Google Scholar 

  • Dunitz JD (1995) X-ray analysis and the structure of organic molecules. Verlag Helvetica Chimica Acta, Basel

    Book  Google Scholar 

  • Woolfson MM (1997) An introduction to X-ray crystallography, 2nd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

Protein Crystallography

  • Blundell TL, Johnson LN (1977) Protein crystallography. Academic, New York

    Google Scholar 

  • Eisenberg D (1970) in The Enzymes, vol I, 3rd edition (ed Boyer PD), Academic, New York

    Google Scholar 

  • Phillips DC (1966) Adv Struct Res Diffraction Methods 2:75

    CAS  Google Scholar 

Crystallographic Computing

Chemical Data

  • Sutton LE (ed) (1958; suppl 1965) Tables of interatomic distances and configuration in molecules and ions. The Chemical Society, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ladd, M., Palmer, R. (2013). Fourier Techniques in X-Ray Structure Determination. In: Structure Determination by X-ray Crystallography. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3954-7_7

Download citation

Publish with us

Policies and ethics