Skip to main content

Degradable and Bioactive Synthetic Composite Scaffolds for Bone Tissue Engineering

  • Chapter
  • First Online:
Degradation of Implant Materials

Abstract

There is significant information and knowledge acquired in the last years on the fabrication, characterisation, and application of bioactive composite scaffolds based on combinations of biodegradable polymers and inorganic fillers intended for bone tissue engineering. Of particular importance is the complete understanding of the degradation behaviour of these scaffolds in order to assess the effects of pore structure, scaffold geometry, permeability, and the influence of bioactive fillers on the scaffold mechanical properties and biological performance. The present chapter examines the development of such bioactive and biodegradable scaffolds discussing their mechanical properties and degradation behaviour. A general background on biodegradable polymers with focus on the fabrication and properties of scaffolds made from polyesters is included, followed by a complete overview of the development of scaffolds based on biodegradable polymer/bioactive glass composites. The general degradation behaviour of composite polymer/inorganic phase scaffolds is presented and a specific example is discussed, e.g. poly(d,l lactide) (PDLLA)/bioactive glass composite, based on recent results on a long-term (600 days) degradation study in simulated body fluid. Remaining areas of research in this field are indicated, highlighting the need for appropriate characterisation techniques coupled with predictive analytical models and the requirement for accurate characterisation of the interface between the polymer matrix and the inorganic fillers in order to ascertain the scaffold degradation behaviour in vitro and in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926

    Article  CAS  Google Scholar 

  2. Hutmacher DW (2001) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21(24):2529–2543

    Article  Google Scholar 

  3. Yang S, Leong K, Du Z, Chua C (2001) The design of scaffolds for use in tissue engineering. Part 1. Traditional factors. Tissue Eng 7(6):679–689

    Article  CAS  Google Scholar 

  4. Babensee JE, Anderson JM, Melntire LV, Mikos AG (1998) Host response to tissue engineered devices. Adv Drug Deliv Rev 33:111–139

    Article  CAS  Google Scholar 

  5. Holy CE, Dang SM, Davies JE, Shoichet MS (1999) In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam. Biomaterials 20:1177–1185

    Article  CAS  Google Scholar 

  6. Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491

    Article  CAS  Google Scholar 

  7. Roy TD, Simon JL, Ricci JL, Rekow ED, Thompson VP, Parsons JR (2003) Performance of degradable composite bone repair products made via three-dimensional fabrication techniques. J Biomed Mater Res A 66(2):283–291

    Article  Google Scholar 

  8. Lu JX, Flautre B, Anselme K, Hardouin P, Gallur A, Descamps M, Thierry B (1999) Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med 10(2):111–120

    Article  CAS  Google Scholar 

  9. Wu L, Ding J (2004) In vitro degradation of three-dimensional porous poly(d, l-lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials 25(27):5821–5830

    Article  CAS  Google Scholar 

  10. Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP (1994) Preparation and characterization of poly(l-lactic acid) foams. Polymer 35(5):1068–1077

    Article  CAS  Google Scholar 

  11. Borden M, Attawia M, Laurencin CT (2002) The sintered microsphere matrix for bone tissue engineering: in vitro osteoconductivity studies. J Biomed Mater Res 61:421–429

    Article  CAS  Google Scholar 

  12. Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32(3):477–486

    Article  Google Scholar 

  13. Agrawal CM, Ray RB (2001) Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res 55(2):141–150

    Article  CAS  Google Scholar 

  14. Delabarde C, Plummer CJG, Bourban PE, Månson JAE (2010) Solidification behavior of PLLA/nHA nanocomposites. Compos Sci Technol 70:1813–1819

    Article  CAS  Google Scholar 

  15. Ara M, Watanabe M, Imai Y (2002) Effect of blending calcium compounds on hydrolytic degradation of poly (dl-lactic acid-co-glycolic acid). Biomaterials 23(12):2479–2483

    Article  CAS  Google Scholar 

  16. Van Der Meer SAT, De Wijn JR, Wolke JGC (1996) The influence of basic filler materials on the degradation of amorphous d- and l-lactide copolymer. J Mater Sci Mater Med 7(6):359–361

    Article  Google Scholar 

  17. Li SM (1999) Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. J Biomed Mater Res 48(3):342–353

    Article  CAS  Google Scholar 

  18. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431

    Article  CAS  Google Scholar 

  19. Guarino V, Causa F, Ambrosio L (2007) Bioactive scaffolds for bone and ligament tissue. Expert Rev Med Devices 4:405–418

    Article  CAS  Google Scholar 

  20. Misra SK, Ansari T, Mohn D, Valappil SP, Brunner TJ, Stark WJ, Roy I, Knowles JC, Sibbons PD, Jones EV, Boccaccini AR, Salih V (2010) Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites. J Roy Soc Interface 7:453–465

    Article  CAS  Google Scholar 

  21. Piskin E (1997) Biomaterials in different forms for tissue engineering: an overview. Mater Sci Forum 250:14–42

    Article  Google Scholar 

  22. Griffith LG (2000) Polymeric biomaterials. Acta Mater 48(1):263–277

    Article  CAS  Google Scholar 

  23. Ma PX, Elisseeff J (2005) Scaffolding in tissue engineering. Taylor and Francis, Boca Raton, FL

    Book  Google Scholar 

  24. Boccaccini AR, Blaker JJ (2005) Bioactive composite materials for tissue engineering scaffolds. Expert Rev Med Devices 2:303–317

    Article  CAS  Google Scholar 

  25. Gross KA, Rodriguez-Lorenzo LM (2004) Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering. Biomaterials 25:4955–4962

    Article  CAS  Google Scholar 

  26. Maquet V, Boccaccini AR, Pravata L, Notingher I, Jerome R (2003) Preparation, characterisation, and in vitro degradation of bioresorbable and bioactive composites based on Bioglass®-filled polylactide foams. J Biomed Mater Res 66(2):335–346

    Article  CAS  Google Scholar 

  27. Ma PX, Zhang RY (2001) Microtubular architecture of biodegradable polymer scaffolds. J Biomed Mater Res 56(4):469–477

    Article  CAS  Google Scholar 

  28. Blaker JJ, Knowles JC, Day RM (2008) Novel fabrication techniques to produce microspheres by thermally induced phase separation for tissue engineering and drug delivery. Acta Biomater 4(2):264–272

    Article  CAS  Google Scholar 

  29. Chen VJ, Smith LA, Ma PX (2006) Bone regeneration on computer-designed nano-fibrous scaffolds. Biomaterials 27(21):3973–3979

    Article  CAS  Google Scholar 

  30. Wei GB, Ma PX (2006) Macro-porous and nano-fibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres. J Biomed Mater Res A 78(2):306–315

    Google Scholar 

  31. Blacher S, Maquet V, Jérôme R, Pirard JP, Boccaccini AR (2005) Study of the connectivity properties of Bioglass®-filled polylactide foam scaffolds by image analysis and impedance spectroscopy. Acta Biomater 1:565–574

    Article  CAS  Google Scholar 

  32. Blaker JJ, Nazhat SN, Maquet V, Boccaccini AR (2011) Long-term in vitro degradation of PDLLA/Bioglass® bone scaffolds in acellular simulated body fluid. Acta Biomater 7:829–840

    Article  CAS  Google Scholar 

  33. Ma PX, Zhang RY (1999) Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res 46(1):60–72

    Article  CAS  Google Scholar 

  34. Zhang RY, Ma PX (2000) Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures. J Biomed Mater Res 52(2):430–438

    Article  CAS  Google Scholar 

  35. Wei GB, Ma PX (2008) Nanostructured biomaterials for regeneration. Adv Funct Mater 18(22):3568–3582

    Article  CAS  Google Scholar 

  36. Blaker JJ, Lee KY, Mantalaris A, Bismarck A (2010) Ice-microsphere templating to produce highly porous nanocomposite PLA matrix scaffolds with pores selectively lined by bacterial cellulose nano-whiskers. Compos Sci Technol 70(13):1879–1888

    Article  CAS  Google Scholar 

  37. Vert M, Mauduit J, Li S (1994) Biodegradation of PLA/GA polymers: increasing complexity. Biomaterials 15:1209–1213

    Article  CAS  Google Scholar 

  38. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21:2335–2346

    Article  CAS  Google Scholar 

  39. Thomson RC, Yaszemski MJ, Powers JM, Mikos AG (1998) Hydroxyapatite fiber reinforced poly(α-hydroxy ester) foams for bone regeneration. Biomaterials 19(21):1935–1943

    Article  CAS  Google Scholar 

  40. Zhang K, Wang Y, Hillmyer MA, Francis LF (2004) Processing and properties of porous poly(l-lactide)/bioactive glass composites. Biomaterials 25(13):2489–2500

    Article  CAS  Google Scholar 

  41. Roether JA, Boccaccini AR, Hench LL, Maquet V, Gautier S, Jerome R (2002) Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass® for tissue engineering applications. Biomaterials 23(18):3871–3878

    Article  CAS  Google Scholar 

  42. Mano JF, Sousa RA, Boesel LF, Neves NM, Reis RL (2004) Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments. Compos Sci Technol 64:789–817

    Article  CAS  Google Scholar 

  43. Heidemann W, Jeschkeit S, Ruffieux K et al (2001) Degradation of poly(d, l-lactide) implants of calciumphosphates with or without addition in vivo. Biomaterials 22(17):2371–2381

    Article  CAS  Google Scholar 

  44. Bergsma JE, Rozema FR, Bos RRM, Boering G, Debruijn WC, Pennings AJ (1995) In-vivo degradation and biocompatibility study of in-vitro pre-degraded as-polymerised polylactide particles. Biomaterials 16(4):267–274

    Article  CAS  Google Scholar 

  45. Rich J, Jaakkola T, Tirri T, Narhi T, Yli-Urpo A, Seppala J (2002) In vitro evaluation of poly(ε-caprolactone-co-d, l-lactide)/bioactive glass composites. Biomaterials 23(10):2143–2150

    Article  CAS  Google Scholar 

  46. Dunn AS, Campbell PG, Marra KG (2001) The influence of polymer blend composition on the degradation of polymer/hydroxyapatite biomaterials. J Mater Sci Mater Med 12(8):673–677

    Article  CAS  Google Scholar 

  47. Bergsma EJ, Rozema FR, Bos RRM, de Bruijn WC (1993) Foreign body reaction to resorbable poly(l-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures. Maxillofac Surg 51:51–66

    Google Scholar 

  48. Jagur-Grodzinski J (1999) Biomedical application of functional polymers. React Funct Polym 39(2):99–138

    Article  CAS  Google Scholar 

  49. Park TG (1995) Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition. Biomaterials 16:1123–1130

    Article  CAS  Google Scholar 

  50. Wu XS, Wang N (2001) Synthesis, characterization, biodegradation and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: Biodegradation. J Biomater Sci Polym Ed 12:21–34

    Article  CAS  Google Scholar 

  51. Lu L, Peter SJ, LyMan MD, Lai HL, Leite SM, Tamada JA, Uyama S, Vacanti JP, Langer R, Mikos AG (2000) In vitro and in vivo degradation of porous poly(d, l-lactic-co-glycolic acid) foams. Biomaterials 21:1837–1845

    Article  CAS  Google Scholar 

  52. Lu HH, El Amin SF, Scott KD, Laurencin CT (2003) Three dimensional bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblasts-like cells in vitro. J Biomed Mater Res A 64A:465–474

    Article  CAS  Google Scholar 

  53. Meretoja VV, Helminen AO, Korventausta JJ, Haapa-aho V, Seppala JV, Narhi TO (2006) Crosslinked poly(e-caprolactone/d, l-lactide)/bioactive glass composite scaffolds for bone tissue engineering. J Biomed Mater Res A 77:261–268

    CAS  Google Scholar 

  54. Niiranen H, Pyhalto T, Rokkanen P, Kellomaki M, Tormala P (2004) In vitro and in vivo behavior of self-reinforced bioabsorbable polymer and self-reinforced bioabsorbable polymer/bioactive glass composites. J Biomed Mater Res 69A(4):699–708

    Article  CAS  Google Scholar 

  55. Verheyen CCPM, de Wijn JR, van Blitterswijk CA, de Groot K, Rozing PM (1993) Hydroxyapatite/poly(l-lactide) composites: an animal study on push-out strengths and interface histology. J Biomed Mater Res 27:433–444

    Article  CAS  Google Scholar 

  56. Zhang R, Ma PX (1999) Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering I. Preparation and morphology. J Biomed Mater Res 44(4):446–455

    Article  CAS  Google Scholar 

  57. Ma PX, Zhang R, Xiao G, Franceschi R (2001) Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds. J Biomed Mater Res A 54(2):284–293

    Article  CAS  Google Scholar 

  58. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510

    Article  CAS  Google Scholar 

  59. Yao J, Radin S, Leboy PS, Ducheyne P (2005) The effect of bioactive glass content on synthesis and bioactivity of composite poly (lactic-co-glycolic acid)/bioactive glass substrate for tissue engineering. Biomaterials 26(14):1935–1943

    Article  CAS  Google Scholar 

  60. Roether JA, Gough JE, Boccaccini AR, Hench LL, Maquet V, Jérôme R (2002) Novel bioresorbable and bioactive composite based on bioactive glass and polylactide foams for bone tissue engineering. J Mater Sci Mater Med 13:1207–1214

    Article  CAS  Google Scholar 

  61. Xynos ID, Edgar AJ, Buttery LDK, Hench LL, Polak JM (2000) Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun 276:461–465

    Article  CAS  Google Scholar 

  62. Gorustovich A, Roether J, Boccaccini AR (2010) Effect of bioactive glasses on angiogenesis: in-vitro and in-vivo evidence. A review. Tissue Eng Part B Rev 16:199–207

    Article  CAS  Google Scholar 

  63. Boccaccini AR, Erol M, Stark WJ, Mohn D, Hong Z, Mano JF (2010) Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos Sci Technol 70:1764–1776

    Article  CAS  Google Scholar 

  64. Maquet V, Boccaccini AR, Pravata L, Notingher I, Jerome R (2004) Porous poly(α-hydroxyacid)/Bioglass® composite scaffolds for bone tissue engineering. I: Preparation and in vitro characterisation. Biomaterials 25(18):4185–4194

    Article  CAS  Google Scholar 

  65. Boccaccini AR, Maquet V (2003) Bioresorbable and bioactive polymer/Bioglass® composites with tailored pore structure for tissue engineering applications. Compos Sci Technol 63(16):2417–2429

    Article  CAS  Google Scholar 

  66. Boccaccini AR, Notingher I, Maquet V, Jerome R (2003) Bioresorbable and bioactive composite materials based on polylactide foams filled with and coated by Bioglass® particles for tissue engineering applications. J Mater Sci Mater Med 14(5):443–450

    Article  CAS  Google Scholar 

  67. Rhee S (2004) Bone-like apatite-forming ability and mechanical properties of poly(ε-caprolactone)/silica hybrid as a function of poly(ε-caprolactone) content. Biomaterials 25(7):1167–1175

    Article  CAS  Google Scholar 

  68. Matthews FL, Rawlings RD (1994) Composite materials: engineering and science. Woodhead Publishing Limited, CRC Press, Cambridge, UK

    Google Scholar 

  69. Boccaccini AR, Roether JA, Hench LL, Maquet V, Jerome R (2002) A composites approach to tissue engineering. Ceram Eng Sci Proc 23(4):805–816

    Article  CAS  Google Scholar 

  70. Kim H-W, Lee EJ, Jun IK, Kim HE, Knowles JC (2005) Degradation and drug release of phosphate glass/polycaprolactone biological composites for hard-tissue regeneration. J Biomed Mater Res 75B:34–41

    Article  CAS  Google Scholar 

  71. Blaker JJ, Lee K-Y, Bismarck A (2011) Hierarchical composites made entirely from renewable resources. J Biobased Mater Bioenergy 5(1):1–16

    Article  CAS  Google Scholar 

  72. Verrier S, Boccaccini AR (2008) Bioactive composite materials for bone tissue engineering scaffolds. In: Polak J, Mantalaris S, Harding SE (eds) Advances in tissue engineering. Imperial College Press, London, UK

    Google Scholar 

  73. Gerhardt LC, Boccaccini AR (2010) Review: bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3(7):3867–3910

    Article  CAS  Google Scholar 

  74. Day RM, Boccaccini AR, Shurey S, Roether JA, Forbes A, Hench LL, Gabe SM (2004) Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. Biomaterials 25:5857–5866

    Article  CAS  Google Scholar 

  75. Yang XB, Webb D, Blaker J, Boccaccini AR, Maquet V, Cooper C, Oreffo ROC (2006) Evaluation of human bone marrow stromal cell growth on biodegradable polymer/Bioglass® composites. Biochem Biophys Res Commun 342:1098–1107

    Article  CAS  Google Scholar 

  76. Keshaw H, Georgiou G, Blaker JJ, Forbes A, Knowles JC, Day RM (2009) Assessment of polymer/bioactive glass-composite microporous spheres for tissue regeneration applications. Tissue Eng Part A 15:1451–1461

    Article  CAS  Google Scholar 

  77. Korventausta J, Jokinen M, Rosling A, Petola T, Yli-Urpo A (2003) Calcium phosphate formation and ion dissolution rates from silica gel-PDLLA composites. Biomaterials 24(28):5173–5182

    Article  CAS  Google Scholar 

  78. Blaker JJ, Maquet V, Jerome R, Boccaccini AR, Nazhat SN (2005) Mechanical properties of highly porous PDLLA/Bioglass® composite foams as scaffolds for bone tissue engineering. Acta Biomater 1:643–652

    Article  CAS  Google Scholar 

  79. Schiller C, Siedler M, Peters F, Epple M (2001) Functionally graded materials of biodegradable polyesters and bone-like calcium phosphates for bone replacement. Ceram Trans 114:97–108

    CAS  Google Scholar 

  80. Navarro M, Ginebra MP, Planell JA, Zeppetelli S, Ambrosio L (2004) Development and cell response of a new biodegradable composite scaffold for guided bone regeneration. J Mater Sci Mater Med 15:419–422

    Article  CAS  Google Scholar 

  81. Hutmacher DW, Schantz JT, Lam CXF, Tan KC, Lim TC (2007) State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 1:245–260

    Article  CAS  Google Scholar 

  82. Maquet V, Martin D, Scholtes F, Franzen R, Schoenen J, Moonen G, Jerome R (2001) Poly(d, l-lactide) foams modified by poly(ethylene oxide)-block-poly(d, l-lactide) copolymers and a-FGF: in vitro and in vivo evaluation for spinal cord regeneration. Biomaterials 22:1137–1146

    Article  CAS  Google Scholar 

  83. Orava E, Korventausta J, Rosenberg M, Jokinen M, Rosling A (2007) In vitro degradation of porous poly(d, l-lactide-co-glycolide) (PLGA)/bioactive glass composite foams with a polar structure. Polym Degrad Stab 92:14–23

    Article  CAS  Google Scholar 

  84. Henry F, Devassine M, Guerin P, Costa LC, Briand X (2005) Biodegradable polymer studied by physical properties measurements. Mater Sci Forum 480–481:165–168

    Article  Google Scholar 

  85. Siemann U (1985) The influence of water on the glass transition of poly(d, l-lactic acid). Thermochim Acta 85:513–516

    Article  CAS  Google Scholar 

  86. Blaker JJ, Gough JE, Maquet V, Notingher I, Boccaccini AR (2003) In vitro evalulation of novel bioactive composites based on Bioglass®-filled polylactide foams for bone tissue engineering scaffolds. J Biomed Mater Res 67A:1401–1411

    Article  CAS  Google Scholar 

  87. Blaker JJ, Pratten J, Ready D, Knowles JC, Forbes A, Day RM (2008) Assessment of antimicrobial microspheres as a prospective novel treatment targeted towards the repair of perianal fistulae. Aliment Pharmacol Ther 28(5):614–622

    Article  CAS  Google Scholar 

  88. Georgiou G, Mathieu L, Pioletti DP, Bourban P-E, Månson J-A E, Knowles JC, Nazhat SN (2007) Polylactic acid–phosphate glass composite foams as scaffolds for bone tissue engineering. J Biomed Mater Res 80B(2):322–331

    Article  CAS  Google Scholar 

  89. Shive MS, Anderson JM (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 28(1):5–24

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Boccaccini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Boccaccini, A.R., Chatzistavrou, X., Blaker, J.J., Nazhat, S.N. (2012). Degradable and Bioactive Synthetic Composite Scaffolds for Bone Tissue Engineering. In: Eliaz, N. (eds) Degradation of Implant Materials. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3942-4_6

Download citation

Publish with us

Policies and ethics