Degradation of Dental Implants

  • Takao Hanawa


In this chapter, the degradation of dental implants is discussed. First, the dental implant system and the biological environment surrounding it are explained. Hydroxyapatite coating layer is sometimes fractured, causing loosening and infection, as discussed too. To understand biodegradation of dental implants, general properties and electrochemical properties must be understood. The passive surface oxide film on titanium and the reconstruction of the passive film are significant to understand an electrochemical degradation or corrosion of titanium. On the other hand, the release of metallic ions from titanium and the behavior of the released ions govern the biological reaction or toxicity. Of course, the contamination of implant surface is important to determine the tissue compatibility. The fracture of dental implants is also discussed. Finally, biofilm formation on dental implant, inducing infection, is explained.


Calcium Phosphate Passive Film Dental Implant Titanium Surface Surface Oxide Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hanawa T (2010) Biofunctionalization of titanium for dental implant. Jpn Dent Sci Rev 46:93–101CrossRefGoogle Scholar
  2. 2.
    Tsutsumi Y, Nishimura D, Doi H, Nomura N, Hanawa T (2009) Difference in surface reactions between titanium and zirconium in Hanks’ solution to elucidate mechanism of calcium phosphate formation on titanium using XPS and cathodic polarization. Mater Sci Eng C 29:1702–1708CrossRefGoogle Scholar
  3. 3.
    Andreiotelli M, Kohal RJ (2009) Fracture strength of zirconia implants after artificial aging. Clin Implant Dent Relat Res 11:158–166CrossRefGoogle Scholar
  4. 4.
    Natali AN (ed) (2003) Dental biomechanics. Taylor & Francis, London, pp 69–87Google Scholar
  5. 5.
    Merritt K, Brown SA (1988) Effect of proteins and pH on fretting corrosion and metal ion release. J Biomed Mater Res 22:111–120CrossRefGoogle Scholar
  6. 6.
    Williams RL, Brown SA, Merritt K (1988) Electrochemical studies on the influence of proteins on the corrosion of implant alloys. Biomaterials 9:181–186CrossRefGoogle Scholar
  7. 7.
    Black J (1984) Biological performance of materials. Plenum, New YorkGoogle Scholar
  8. 8.
    Hench LL, Ethridge EC (1975) Biomaterials – the interfacial problem. Adv Biomed Eng 5:35–150Google Scholar
  9. 9.
    Ong L, Lucas LC (1994) Post-deposition heat treatment for ion beam sputter deposited calcium phosphate coatings. Biomaterials 15:337–341CrossRefGoogle Scholar
  10. 10.
    Yoshinari M, Watanabe Y, Ohtsuka Y, Dérand T (1997) Solubility control of thin calcium-phosphate coatings with rapid heating. J Dent Res 76:1485–1494CrossRefGoogle Scholar
  11. 11.
    Yoshinari M, Ohtsuki Y, Derand T (1994) Thin hydroxyapatite coating produced by the ion beam dynamic mixing method. Biomaterials 15:529–535CrossRefGoogle Scholar
  12. 12.
    Yoshinari M, Hayakawa T, Wolke JCG, Nemoto K, Jansen JA (1998) Influence of rapid heating with infrared radiation on RF magnetron-sputtered calcium phosphate coatings. J Biomed Mater Res A 37:60–67CrossRefGoogle Scholar
  13. 13.
    Ozeki K, Yuhta T, Fukui Y, Aoki H, Nishimura I (2002) A functionally graded Ti/hydroxyapatite film obtained by sputtering. J Mater Sci Mater Med 13:253–258CrossRefGoogle Scholar
  14. 14.
    Ban S, Maruno S, Arimoto N, Harada A, Hasegawa J (1997) Effect of electrochemically deposited apatite coating on bonding of bone to the HA-G-Ti composite and Ti. J Biomed Mater Res 36:9–15CrossRefGoogle Scholar
  15. 15.
    Ban S, Maruno S (1998) Morphology and microstructure of electrochemically deposited calcium phosphates in a modified simulated body fluid. Biomaterials 19:1245–1253CrossRefGoogle Scholar
  16. 16.
    Yuda A, Ban S, Izumi Y (2005) Biocompatibility of apatite-coated titanium mesh prepared by hydrothermal-electrochemical method. Dent Mater J 24(4):588–595CrossRefGoogle Scholar
  17. 17.
    Kuroda K, Moriyama M, Ichino R, Okido M, Seki A (2008) Formation and in vivo evaluation of carbonate apatite and carbonate apatite/CaCO3 composite films using the thermal substrate method in aqueous solution. Mater Trans 49:1434–1440CrossRefGoogle Scholar
  18. 18.
    Hosaka M, Shibata Y, Miyazaki T (2006) Preliminary beta-tricalcium phosphate coating prepared by discharging in a modified body fluid enhances collagen immobilization onto titanium. J Biomed Mater Res B 78B:237–242CrossRefGoogle Scholar
  19. 19.
    Tanaka Y, Kobayashi E, Hiromoto S, Asami K, Imai H, Hanawa T (2007) Calcium phosphate formation on Ti by low-voltage electrolytic treatments. J Mater Sci Mater Med 18:797–806CrossRefGoogle Scholar
  20. 20.
    Hayakawa T, Kawasaki M, Takaoka GH (2008) Coating of hydroxyapatite films on titanium substrates by electrodeposition under pulse current. J Ceram Soc Jpn 116:68–73CrossRefGoogle Scholar
  21. 21.
    Narayanan R, Seshadri SK, Kwon TY, Kim KH (2007) Electrochemical nano-grained calcium phosphate coatings on Ti-6Al-4 V for biomedical applications. Scr Mater 56:229–232CrossRefGoogle Scholar
  22. 22.
    Narayanan R, Kwon TY, Kim KH (2008) Preparation and characteristics of nano-grained calcium phosphate coatings on titanium from ultrasonated bath at acidic pH. J Biomed Mater Res B 85:231–239Google Scholar
  23. 23.
    Narayanan R, Kwon TY, Kim KH (2008) Direct nanocrystalline hydroxyapatite formation on titanium from ultrasonated electrochemical bath at physiological pH. Mater Sci Eng C 28:1265–1270CrossRefGoogle Scholar
  24. 24.
    Narayanan R, Kim SY, Kwon TY, Kim KH (2008) Nanocrystalline hydroxyapatite coatings from ultrasonated electrolyte: preparation, characterization, and osteoblast response. J Biomed Mater Res A 87:1053–1060Google Scholar
  25. 25.
    Meng XW, Kwon TY, Kim KH (2008) Hydroxyapatite coating by electrophoretic deposition at dynamic voltage. Dent Mater J 27:666–671CrossRefGoogle Scholar
  26. 26.
    Eliaz N, Kopelovitch W, Burstein L, Kobayashi E, Hanawa T (2009) Electrochemical processes of nucleation and growth of calcium phosphate on titanium supported by real-time quartz crystal microbalance measurements and X-ray photoelectron spectroscopy analysis. J Biomed Mater Res A 89:270–280Google Scholar
  27. 27.
    Lakstein D, Kopelovitch W, Barkay Z, Bahaa M, Hendel D, Eliaz N (2009) Enhanced osseointegration of grit-blasted, NaOH-treated and electrochemically hydroxyapatite-coated Ti-6Al-4V implants in rabbits. Acta Biomater 5:2258–2269CrossRefGoogle Scholar
  28. 28.
    Williams DF (1981) Titanium and titanium alloys. In: Williams DF (ed) Biocompatibility of clinical implant materials, vol 1, CRC. Boca Raton, FL, pp 9–44Google Scholar
  29. 29.
    Meachin G, Williams DF (1973) Change in non-osseous tissue adjacent to titanium implants. J Biomed Mater Res 7:555–572CrossRefGoogle Scholar
  30. 30.
    Woodman JL, Jacobs JJ, Galante JO, Urban RM (1984) Metal ion release from titanium-based prosthetic segmental replacements of long bones in baboons: a long-term study. J Orthop Res 1:421–430CrossRefGoogle Scholar
  31. 31.
    Bessho K, Fujimura K, Iizuka T (1995) Experimental long-term study of titanium ions eluted from pure titanium miniplates. J Biomed Mater Res 29:901–904CrossRefGoogle Scholar
  32. 32.
    Ektessabi AM, Otsuka T, Tsuboi Y, Yokoyama K, Albrektsson T, Sennerby L, Johansson C (1994) Application of micro beam PIXE to detection of titanium ion release from dental and orthopaedic implants. Int J PIXE 4:81–91CrossRefGoogle Scholar
  33. 33.
    Ektessabi AM, Otsuka T, Tsuboi Y, Horino Y, Mokuno Y, Fujii K, Albrektsson T, Sennerby L, Johansson C (1996) Preliminary experimental results on mapping of the elemental distribution of organic tissues surrounding titanium-alloy implants. Nucl Instrum Methods Phys Res B 109(110):278–283CrossRefGoogle Scholar
  34. 34.
    Bianco PD, Ducheyne P, Cuckler JM (1996) Local accumulation of titanium released from a titanium implant in the absence of wear. J Biomed Mater Res 31:227–234CrossRefGoogle Scholar
  35. 35.
    Semlitsch M, Staub F, Weber H (1985) Titanium-aluminium-niobium alloy, development for biocompatible, high strength surgical implants. Biomed Eng 30:334–339Google Scholar
  36. 36.
    Kelly EJ (1982) Electrochemical behaviour of titanium. Mod Aspect Electrochem 14:319–424CrossRefGoogle Scholar
  37. 37.
    Uhlig HH, Revie RW (1985) Corrosion and corrosion control, 3rd edn. Wiley, New York, NYGoogle Scholar
  38. 38.
    Hanawa T, Asami K, Asaoka K (1998) Repassivation of titanium and surface oxide film regenerated in simulated bioliquid. J Biomed Mater Res 40:530–538CrossRefGoogle Scholar
  39. 39.
    Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solution. National Association of Chemical Engineers, Houston, TXGoogle Scholar
  40. 40.
    Asami K, Chen SC, Habazaki H, Hashimoto K (1993) The surface characterization of titanium and titanium-nickel alloys in sulfuric acid. Corros Sci 35:43–49CrossRefGoogle Scholar
  41. 41.
    Hanawa T, Ota M (1991) Calcium phosphate naturally formed on titanium in electrolyte solution. Biomaterials 12:767–774CrossRefGoogle Scholar
  42. 42.
    Hanawa T (1991) Titanium and its oxide film: a substrate for formation of apatite. In: Davies JE (ed) The bone-biomaterial interface. University of Toronto Press, Toronto, pp 49–61Google Scholar
  43. 43.
    Hanawa T, Okuno O, Hamanaka H (1992) Compositional change in surface of Ti-Zr alloys in artificial bioliquid. J Jpn Inst Met 56:1168–1173Google Scholar
  44. 44.
    Sundgren JE, Bodö P, Lundström I (1986) Auger electron spectroscopic studies of the interface between human tissue and implants of titanium and stainless steel. J Colloid Interface Sci 110:9–20CrossRefGoogle Scholar
  45. 45.
    Wever DJ, Veldhuizen AG, de Vries J, Busscher HJ, Uges DRA, van Horn JR (1998) Electrochemical and surface characterisation of a nickel-titanium alloy. Biomaterials 19:761–769CrossRefGoogle Scholar
  46. 46.
    Li P, Ducheyne P (1998) Quasi-biological apatite film induced by titanium in a simulated body fluid. J Biomed Mater Res 41:341–348CrossRefGoogle Scholar
  47. 47.
    Healy KE, Ducheyne P (1992) Hydration and preferential molecular adsorption on titanium in vitro. Biomaterials 13:553–561CrossRefGoogle Scholar
  48. 48.
    Healy KE, Ducheyne P (1992) The mechanisms of passive dissolution of titanium in a model physiological environment. J Biomed Mater Res 26:319–338CrossRefGoogle Scholar
  49. 49.
    Serro AP, Fernandes AC, Saramago B, Lima J, Barbosa MA (1997) Apatite desorption on titanium surfaces – The role of albumin adsorption. Biomaterials 18:963–968CrossRefGoogle Scholar
  50. 50.
    Clark GCF, Williams DF (1982) The effects of proteins on metallic corrosion. J Biomed Mater Res 16:125–134CrossRefGoogle Scholar
  51. 51.
    Bruneel N, Helsen JA (1988) In vitro simulation of biocompatibility of Ti-Al-V. J Biomed Mater Res 22:203–214CrossRefGoogle Scholar
  52. 52.
    Ryhanen J, Niemi E, Serlo W, Niemela E, Sandvik P, Pernu H, Salo T (1997) Biocompatibility of nickel-titanium shape memory metal and its corrosion behaviour in human cell cultures. J Biomed Mater Res 35:451–457CrossRefGoogle Scholar
  53. 53.
    Tang L, Eaton JW (1993) Fibrinogen mediates acute inflammatory responses to biomaterials. J Exp Med 178:2147–2156CrossRefGoogle Scholar
  54. 54.
    Tengvall P, Lundström I, Sjöqvist L, Elwing H, Bjursten LM (1989) Titanium-hydrogen peroxide interaction: model studies of the influence of the inflammatory response on titanium implants. Biomaterials 10:166–175CrossRefGoogle Scholar
  55. 55.
    Pan J, Liao H, Leygraf C, Thierry D, Li J (1998) Variation of oxide films on titanium induced by osteoblast-like cell culture and the influence of an H2O2 pretreatment. J Biomed Mater Res 40:244–256CrossRefGoogle Scholar
  56. 56.
    Mu Y, Kobayashi T, Sumita M, Yamamoto A, Hanawa T (2000) Metal ion release from titanium with active oxygen species generated by rat macrophages in vitro. J Biomed Mater Res 49:238–243CrossRefGoogle Scholar
  57. 57.
    Mu Y, Kobayashi T, Tsuji K, Sumita M, Hanawa T (2002) Causes of titanium release from plate and screws implanted in rabbits. J Mater Sci Mater Med 13:583–588CrossRefGoogle Scholar
  58. 58.
    Att W, Hori N, Takeuchi M, Ouyang J, Yang Y, Anpo M, Ogawa T (2009) Time-dependent degradation of titanium osteoconductivity: an implication of biological aging of implant materials. Biomaterials 30:5352–5363CrossRefGoogle Scholar
  59. 59.
    Eckert SE, Meraw SJ, Cal E, Ow RK (2000) Analysis of incidence and associated factors with fractured implants: a retrospective study. Int J Oral Maxillofac Implants 15:662–667Google Scholar
  60. 60.
    Piattelli A, Scarano A, Piattelli M, Vaia E, Matarasso S (1998) Hollow implants retrieved for fracture: a light and scanning electron microscope analysis of 4 cases. J Periodontol 69:185–189CrossRefGoogle Scholar
  61. 61.
    Yokoyama K, Ichikawa T, Murakami H, Miyamoto Y, Asaoka K (2002) Fracture mechanisms of retrieved titanium screw thread in dental implant. Biomaterials 23:2459–2465CrossRefGoogle Scholar
  62. 62.
    Manda MG, Psyllaki PP, Tsipas DN, Koidis PT (2009) Observations on an in-vivo failure of a titanium dental implant/abutment screw system: a case report. J Biomed Mater Res B Appl Biomater 89:264–273Google Scholar
  63. 63.
    Esposito M, Thomsen P, Ericson LE, Lekholm P (1999) Histopathologic observations on early oral implant failures. Int J Oral Maxillof Implants 14:798–810Google Scholar
  64. 64.
    Heydenrijk K, Meijer HJA, van der Reijden WA, Raghoebar GM, Vissink A, Stegenga B (2002) Microbiota around root-form endosseous implants: a review of the literature. Int J Oral Maxillofac Implants 17:829–838Google Scholar
  65. 65.
    Ellen RP (1998) Microbial colonization of the peri-implant environment and its relevance to long-term success of osseointegrated implants. Int J Prosthodont 11:433–441Google Scholar
  66. 66.
    Piattelli A, Scarano A, Piattelli M (1998) Histologic observations on 230 retrieved dental implants: 8 years’ experience (1989–1996). J Periodontol 69:178–184CrossRefGoogle Scholar
  67. 67.
    Pye AD, Lockhart DE, Dawson MP, Murray CA, Smith AJ (2009) A review of dental implants and infection. J Hosp Infect 72:104–110CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Institute of Biomaterials and BioengineeringTokyo Medical and Dental UniversityChiyoda-kuJapan

Personalised recommendations