Advertisement

Implant Infections and Infection-Resistant Materials

  • Davide Campoccia
  • Lucio Montanaro
  • Carla Renata Arciola
Chapter

Abstract

Infection is broadly recognized as one of the most critical and devastating complications associated with the use of biomaterials, particularly in orthopaedic prosthesis surgery.

The idea of combining biomaterials with antimicrobial substances for prophylaxis of infections through local delivery was first developed in dentistry and then the combination of antibiotic cement was proposed also in orthopaedic surgery. Various prophylaxis measures or antimicrobial treatments are analysed and their different efficacies are considered. Different strategies in designing and using infection-resistant and anti-infective biomaterials are presented and discussed.

Keywords

Bacterial Adhesion Local Delivery Biomaterial Surface Antibiotic Substance Silver Foil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Darouiche RO (2004) Treatment of infections associated with surgical implants. N Engl J Med 350(14):1422–1429CrossRefGoogle Scholar
  2. 2.
    Schierholz JM, Beuth J (2001) Implant infections: a haven for opportunistic bacteria. J Hosp Infect 49(2):87–93CrossRefGoogle Scholar
  3. 3.
    Campoccia D, Montanaro L, Arciola CR (2006) The significance of infection related to orthopedic devices and issues of antibiotic resistance. Biomaterials 27(11):2331–2339CrossRefGoogle Scholar
  4. 4.
    Lewis JS (1909) IX. Note on silver foil in surgery. Ann Surg 50(4):793–796CrossRefGoogle Scholar
  5. 5.
    Sims JM (1869) Ovariotomy: pedicle secured by silver-wire ligatures: cure. Br Med J 1(432):326CrossRefGoogle Scholar
  6. 6.
    Ockerblad NF, Carlson HE (1939) Vesico-vaginal fistula. South Med J 32(6):653–657CrossRefGoogle Scholar
  7. 7.
    Zondek B, Sadowsky A, Brzezinski A (1950) Intra-abdominal routine prophylaxis by penicillin in gynaecological operations and caesarean sections. Harefuah 39(10):115–117Google Scholar
  8. 8.
    Colton MB, Ehrlich E (1953) Bactericidal effect obtained by addition of antibiotics to dental cements and direct filling resins. J Am Dent Assoc 47(5):524–531Google Scholar
  9. 9.
    Hessert GR (1971) Tensile strength and structure of bone cement Palacos mixed with gentamicin sulfate. Arch Orthop Unfallchir 69(4):289–299CrossRefGoogle Scholar
  10. 10.
    Wahlig H, Buchholz HW (1972) Experimental and clinical studies on the release of gentamicin from bone cement. Chirurg 43(10):441–445Google Scholar
  11. 11.
    Alexander AD (1951) Bacitracin and gelfoam. Combined use in dentistry. US Armed Forces Med J 2(8):1247–1250Google Scholar
  12. 12.
    Goldman DR, Kilgore DS, Panzer JD, Atkinson WH (1973) Prevention of dry socket by local application of lincomycin in Gelfoam. Oral Surg Oral Med Oral Pathol 35(4):472–474CrossRefGoogle Scholar
  13. 13.
    Bennett-Guerrero E, Pappas TN, Koltun WA, Fleshman JW, Lin M, Garg J, Mark DB, Marcet JE, Remzi FH, George VV, Newland K, Corey GR, SWIPE 2 Trial Group (2010) Gentamicin-collagen sponge for infection prophylaxis in colorectal surgery. N Engl J Med 363(11):1038–1049CrossRefGoogle Scholar
  14. 14.
    Bennett-Guerrero E, Ferguson TB Jr, Lin M, Garg J, Mark DB, Scavo VA Jr, Kouchoukos N, Richardson JB Jr, Pridgen RL, Corey GR, SWIPE-1 Trial Group (2010) Effect of an implantable gentamicin-collagen sponge on sternal wound infections following cardiac surgery: a randomized trial. JAMA 304(7):755–762CrossRefGoogle Scholar
  15. 15.
    Campoccia D, Montanaro L, Speziale P, Arciola CR (2010) Antibiotic-loaded biomaterials and the risks for the spread of antibiotic resistance following their prophylactic and therapeutic clinical use. Biomaterials 31(25):6363–6377CrossRefGoogle Scholar
  16. 16.
    Engesaeter LB, Lie SA, Espehaug B, Furnes O, Vollset SE, Havelin LI (2003) Antibiotic prophylaxis in total hip arthroplasty: effects of antibiotic prophylaxis systemically and in bone cement on the revision rate of 22,170 primary hip replacements followed 0–14 years in the Norwegian Arthroplasty Register. Acta Orthop Scand 74(6):644–651CrossRefGoogle Scholar
  17. 17.
    Arciola CR, Alvi FI, An YH, Campoccia D, Montanaro L (2005) Implant infection and infection resistant materials: a mini review. Int J Artif Organs 28(11):1119–1125Google Scholar
  18. 18.
    Nagaoka S, Kawakami H (1995) Inhibition of bacterial adhesion and biofilm formation by a heparinized hydrophilic polymer. ASAIO J 41(3):M365–M368CrossRefGoogle Scholar
  19. 19.
    Saldarriaga Fernández IC, van der Mei HC, Lochhead MJ, Grainger DW, Busscher HJ (2007) The inhibition of the adhesion of clinically isolated bacterial strains on multi-component cross-linked poly(ethylene glycol)-based polymer coatings. Biomaterials 28(28):4105–4112CrossRefGoogle Scholar
  20. 20.
    Roosjen A, Boks NP, van der Mei HC, Busscher HJ, Norde W (2005) Influence of shear on microbial adhesion to PEO-brushes and glass by convective-diffusion and sedimentation in a parallel plate flow chamber. Colloids Surf B Biointerfaces 46(1):1–6CrossRefGoogle Scholar
  21. 21.
    Tsibouklis J, Stone M, Thorpe AA, Graham P, Peters V, Heerlien R, Smith JR, Green KL, Nevell TG (1999) Preventing bacterial adhesion onto surfaces: the low-surface-energy approach. Biomaterials 20(13):1229–1235CrossRefGoogle Scholar
  22. 22.
    Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L (2010) The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater 6(10):3824–3846CrossRefGoogle Scholar
  23. 23.
    Campoccia D, Montanaro L, Agheli H, Sutherland DS, Pirini V, Donati ME, Arciola CR (2006) Study of Staphylococcus aureus adhesion on a novel nanostructured surface by chemiluminometry. Int J Artif Organs 29(6):622–629Google Scholar
  24. 24.
    Maddikeri RR, Tosatti S, Schuler M, Chessari S, Textor M, Richards RG, Harris LG (2008) Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: a first step toward cell selective surfaces. J Biomed Mater Res A 84(2):425–435Google Scholar
  25. 25.
    Vergara-Irigaray M, Valle J, Merino N, Latasa C, García B, Ruiz de Los Mozos I, Solano C, Toledo-Arana A, Penadés JR, Lasa I (2009) Relevant role of fibronectin-binding proteins in Staphylococcus aureus biofilm-associated foreign-body infections. Infect Immun 77(9):3978–3991CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Davide Campoccia
    • 1
  • Lucio Montanaro
    • 1
    • 2
  • Carla Renata Arciola
    • 1
    • 2
  1. 1.Research Unit on Implant InfectionsRizzoli Orthopaedic InstituteBolognaItaly
  2. 2.Experimental Pathology DepartmentUniversity of BolognaBolognaItaly

Personalised recommendations