Overview of Broadband Access Technologies

  • Nirwan Ansari
  • Jingjing Zhang
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


Over the past decade of unprecedented advances in information and communications technology (ICT), a variety of bandwidth-demanding applications, including Internet access, e-mail, e-commerce, voice over internet protocol (VoIP), video conferencing, Internet Protocol Television (IPTV), and online gaming, have emerged and been rapidly deployed in the network. As the Internet traffic grows, it is becoming urgent to efficiently manage, move, and store increasing amount of mission-critical information, thus accelerating the demand for data storage systems. Consequently, the traffic in both public and private communication networks has experienced dramatic growth. As reported by Cisco’s visual networking index, the Internet traffic in 2011 has reached around 28 k petabytes per month while it was less than 200 petabytes per month in 2001 [1]. According to the sixth annual Cisco(R) Visual Networking Index (VNI) Forecast (2011–2016) [2], global IP traffic has increased eightfold over the past 5 years, and will increase 4-fold over the next 5 years. In 2016, global IP traffic will reach 1.3 zettabytes per year or 109.5 exabytes per month. Overall, IP traffic will grow at a compound annual growth rate (CAGR) of 29% from 2011 to 2016. Therefore, to meet the challenge caused by the increased network traffic, telecommunication service providers and enterprises are driven to enhance their networks in providing enough bandwidth for new arising services.


Central Office Optical Line Terminal Voice Over Internet Protocol Broadband Access Passive Optical Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
  2. 2.
  3. 3.
    An, F.T., Gutierrez, D., Kim, K.S., Lee, J.W., Kazovsky, L.: SUCCESS-HPON: A next-generation optical access architecture for smooth migration from TDM-PON to WDM-PON. IEEE Comm. Mag. 43(11), S40–S47 (2005). doi: 10.1109/MCOM.2005.1541698CrossRefGoogle Scholar
  4. 4.
    Assi, C., Ye, Y., Dixit, S., Ali, M.: Dynamic bandwidth allocation for quality-of-service over Ethernet PONs. IEEE J. Sel. Areas Comm. 21(9), 1467–1477 (2003). doi: 10.1109/ JSAC.2003.818837CrossRefGoogle Scholar
  5. 5.
    Bai, X., Shami, A., Ghani, N., Assi, C.: A hybrid granting algorithm for QoS support in Ethernet passive optical networks. In: 2005 IEEE International Conference on Communications, IEEE Conference Publications, Piscataway, NJ, 3, 1869–1873 (2005)Google Scholar
  6. 6.
    Baliga, J., Ayre, R., Hinton, K., Tucker, R.: Energy consumption in wired and wireless access networks. IEEE Comm. Mag. 49(6), 70–77 (2011)CrossRefGoogle Scholar
  7. 7.
    Banerjee, A., Park, Y., Clarke, F., Song, H., Yang, S., Kramer, G., Kim, K., Mukherjee, B.: Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: A review. J. Opt. Netw. 4(11), 737–758 (2005)CrossRefGoogle Scholar
  8. 8.
    Bianco, C., Cucchietti, F., Griffa, G.: INTELEC 07 - 29th International Telecommunications Energy Conference. In: Proceedings of a meeting held Rome, Italy, 2, pages 927, Institute of Electrical and Electronics Engineers (IEEE), Piscataway, NJ (2007)Google Scholar
  9. 9.
    Tanaka, K., Agata, A. and Horiuchi Y.: IEEE 802.3av 10G-EPON Standardization and Its Research and Development Status, IEEE/OSA J. Lightwave Tech., 28(4), 651–61 (2010)Google Scholar
  10. 10.
    Bonilla, M., Barbosa, F., Moschim, E.: Techno-economical comparison between GPON and EPON networks. In: ITU-T Kaleidoscope: Innovations for Digital Inclusions. IEEE Conference Publications, Piscataway, NJ (2009)Google Scholar
  11. 11.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)MATHGoogle Scholar
  12. 12.
    Briggs, P., Chundury, R., Olsson, J.: Carrier ethernet for mobile backhaul. IEEE Comm. Mag. 48(10), 94–100 (2010)CrossRefGoogle Scholar
  13. 13.
    Centeno, G., Armacost, R.L.: Parallel machine scheduling with release time and machine eligibility restrictions. Comput. Ind. Eng. 33(3–4), 273–276 (1997). doi: 10.1109/ MCOM.2007. 344582CrossRefGoogle Scholar
  14. 14.
    Centeno, G., Armacost, R.L.: Minimizing makespan on parallel machines with release time and machine eligibility restrictions. Int. J. Prod. Res. 42(6), 1243–1256 (2004)MATHCrossRefGoogle Scholar
  15. 15.
    Chowdhury, P., Tornatore, M., Sarkar, S., Mukherjee, B.: Building a green wireless-optical broadband access network (WOBAN). IEEE/OSA J. Lightwave Tech. 28(16), 2219–2229 (2010)CrossRefGoogle Scholar
  16. 16.
    Coffman, E., Garey, M., Johnson, D.: An application of bin-packing to multiprocessor scheduling. SIAM J. Comput. 7(1), 1–17 (1978)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Dhaini, A.R., Assi, C.M., Maier, M., Shami, A.: Dynamic wavelength and bandwidth allocation in hybrid TDM/WDM EPON networks. IEEE/OSA J. Lightwave Tech. 25(1), 277–286 (2007)CrossRefGoogle Scholar
  18. 18.
    Effenberger, F., Clearly, D., Haran, O., Kramer, G., Li, R.D., Oron, M., Pfeiffer, T.: An introduction to PON technologies. IEEE Comm. Mag. 45(3), S17–S25 (2007). doi: 10.1109/ MCOM.2007.344582CrossRefGoogle Scholar
  19. 19.
    Fiedler, M., Hossfeld, T., Tran-Gia, P.: A generic quantitative relationship between quality of experience and quality of service. IEEE Netw. 24(2), 36–41 (2010). doi: 10.1109/MNET. 2010.5430142CrossRefGoogle Scholar
  20. 20.
    Full-service Access Network (FSAN) Group.
  21. 21.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)MATHGoogle Scholar
  22. 22.
    GATE: Greening at the edges. NSF Project under grant no. CNS-1218181, August 1, 2012 to July 31, 2015 (PI: Nirwan Ansari)Google Scholar
  23. 23.
    Ghani, N., Shami, A., Assi, C., Raja, M.: Intra-ONU bandwidth scheduling in Ethernet passive optical networks. IEEE Comm. Lett. 8(11), 683–685 (2004). doi: 10.1109/LCOMM. 2004.837664CrossRefGoogle Scholar
  24. 24.
    Gharaei, M., Lepers, C., Gallion, P.: Upstream OCDMA-TDM passive optical network using a novel sourceless ONU. In: 17th European Conference on Networks and Optical Communications (NOC). IEEE Conference Publication, Piscataway, NJ (2012)Google Scholar
  25. 25.
    Giacoumidis, E., Wei, J., Yang, X., Tsokanos, A., Tang, J.: Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs. IEEE Photonics J. 2(2), 130–140 (2010)CrossRefGoogle Scholar
  26. 26.
    Graham, R., Lawler, E., Lenstra, J., Rinnooy Kan, A.: Optimization and approximation in deterministic sequencing and scheduling: A survey. Ann. Discrete Math. 5, 287–326 (1979)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Grobe, K., Elbers, J.P.: PON in adolescence: From TDMA to WDM-PON. IEEE Comm. Mag. 46(1), 26–34 (2008). doi: 10.1109/MCOM.2008.4427227CrossRefGoogle Scholar
  28. 28.
    Gupta, M., Singh, S.: Greening of the internet. In: Proceedings of the ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication, Karlsruhe, Germany. ISBN 1-58113-735-4, ACM, New York, 25–29 (2003)Google Scholar
  29. 29.
    Hajduczenia, M., da Silva, H.J., Monteiro, P.P.: EPON versus APON and GPON: A detailed performance comparison. OSA J. Opt. Netw. 5(4), 298–319 (2006)CrossRefGoogle Scholar
  30. 30.
    Han, T., Zhang, J., Ansari, N.: Chapter 17: Green broadband access networks. In: Obaidat, M.S., Anpalagan, A., Woungang, I. (eds.) Handbook of Green Information and Communication Systems. Academic, New York (2013)Google Scholar
  31. 31.
    Harno, J.: Impact of 3G and beyond technology development and pricing on mobile data service provisioning, usage and diffusion. Telemat. Inform. 27(3), 269–282 (2010)CrossRefGoogle Scholar
  32. 32.
    Heikkinen, M.V.J., Berger, A.W.: Comparison of user traffic characteristics on mobile-access versus fixed-access networks. In: Proceedings of the 13th International Conference on Passive and Active Measurement, PAM’12, pp. 32–41. Springer, Berlin (2012)Google Scholar
  33. 33.
    Heron, R.W., Pfeiffer, T., van Veen, D.T., Smith, J., Patel, S.S.: Technology innovations and architecture solutions for the next-generation optical access network. Technical Report 1, Bell Labs Technical Journal (2008)Google Scholar
  34. 34.
    Hiertz, G., Denteneer, D., Stibor, L., Zang, Y., Costa, X., Walke, B.: The IEEE 802.11 universe. IEEE Comm. Mag. 48(1), 62–70 (2010)Google Scholar
  35. 35.
    Honcharenko, W., Kruys, J., Lee, D., Shah, N.: Broadband wireless access. IEEE Comm. Mag. 35(1), 20–26 (1997)CrossRefGoogle Scholar
  36. 36.
    Hoßfeld, T., Binzenhöfer, A.: Analysis of Skype VoIP traffic in UMTS: End-to-end QoS and QoE measurements. Comput. Netw. 52(3), 650–666 (2008)MATHCrossRefGoogle Scholar
  37. 37.
    Hou, E., Ansari, N., Ren, H.: A genetic algorithm for multiprocessor scheduling. IEEE Trans. Parallel Distrib. Syst. 5(2), 113–120 (1994)CrossRefGoogle Scholar
  38. 38.
  39. 39.
  40. 40.
  41. 41.
  42. 42.
  43. 43.
    Hutcheson, L.: FTTx: Current status and the future. IEEE Comm. Mag. 46(7), 90–95 (2008). doi: 10.1109/MCOM.2008.4557048CrossRefGoogle Scholar
  44. 44.
    IEEE approved Draft Std P802.3av/D3.4 (2009)Google Scholar
  45. 45.
    ITU-T: Recommendation G. 1010: End-user multimedia QoS categories (2001)Google Scholar
  46. 46.
    ITU-T Recommendation G.984 series:
  47. 47.
    ITU-T Recommendation G.987 series:
  48. 48.
    Jiang, S., Xie, J.: A frame division method for prioritized DBA in EPON. IEEE J. Sel. Areas Comm. 24(4), 83–94 (2006). doi: 10.1109/JSAC.2006.1613774MathSciNetGoogle Scholar
  49. 49.
    Jiménez, T., Merayo, N., Fernández, P., Durán, R., de Miguel, I., Lorenzo, R., Abril, E.: Implementation of a PID controller for the bandwidth assignment in long-reach PONs. IEEE/OSA J. Opt. Comm. Netw. 4(5), 392–401 (2012)CrossRefGoogle Scholar
  50. 50.
    Kani, J., Bourgart, F., Cui, A., Rafel, A., Campbell, M., Davey, R., Rodrigues, S.: Next-generation PON-Part I: Technology roadmap and general requirements. IEEE Comm. Mag. 47(11), 43–49 (2009)CrossRefGoogle Scholar
  51. 51.
    Kanonakis, K., Giacoumidis, E., Tomkos, I.: Physical-layer-aware MAC schemes for dynamic subcarrier assignment in OFDMA-PON networks. IEEE/OSA J. Lightwave Tech. 30(12), 1915–1923 (2012)CrossRefGoogle Scholar
  52. 52.
    Kanonakis, K., Tomkos, I., Pfeiffer, T., Prat, J., Kourtessis, P.: ACCORDANCE: A novel OFDMA-PON paradigm for ultra-high capacity converged wireline-wireless access networks. In: Transparent Optical Networks (ICTON), 12th International Conference on, pp. 1–4, IEEE Conference Puboication, Piscataway, NJ (2010). doi: 10.1109/ ICTON.2010.5549027Google Scholar
  53. 53.
    Kataoka, N., Wada, N., Cincotti, G., Kitayama, K.: 2.56 tbps (40-gbps × 8-wavelength × 4-oc × 2-pol) asynchronous WDM-OCDMA-PON using a multi-port encoder/decoder. In: 37th European Conference and Exhibition on Optical Communication (ECOC). IEEE Conference Publications, Piscataway, NJ (2011)Google Scholar
  54. 54.
    Kim, C., Yoo, T.W., Kim, B.T.: A hierarchical weighted round robin EPON DBA scheme and its comparison with cyclic water-filling algorithm. IEEE Int. Conf. Comm. 2156–2161 (2007). doi: 10.1109/ICC.2007.363Google Scholar
  55. 55.
    Kim, K.: On the evolution of PON-based FTTH solutions. Inf. Sci. 149(1), 21–30 (2003)CrossRefGoogle Scholar
  56. 56.
    Kramer, G., Mukherjee, B., Dixit, S., Ye, Y., Hirth, R.: Supporting differentiated classes of service in Ethernet passive optical networks. J. Opt. Netw. 1(8), 280–298 (2002)Google Scholar
  57. 57.
    Kramer, G., Mukherjee, B., Pesavento, G.: IPACT a dynamic protocol for an Ethernet PON (EPON). IEEE Comm. Mag. 40(2), 74–80 (2002). doi: 10.1109/35.983911CrossRefGoogle Scholar
  58. 58.
    Kramer, G., Pesavento, G.: Ethernet passive optical network (EPON): Building a next-generation optical access network. IEEE Comm. Mag. 40(2), 66–73 (2002). doi: 10.1109/ 35.983910CrossRefGoogle Scholar
  59. 59.
    Kubo, R., Kani, J., Ujikawa, H., Sakamoto, T., Fujimoto, Y., Yoshimoto, N., Hadama, H.: Study and demonstration of sleep and adaptive link rate control mechanisms for energy efficient 10G-EPON. IEEE/OSA J. Opt. Comm. Netw. 2(9), 716–729 (2010)CrossRefGoogle Scholar
  60. 60.
    Kwong, K.H., Harle, D., Andonovic, I.: Dynamic bandwidth allocation algorithm for differentiated services over WDM EPONs. In: The Ninth International Conference on Communications Systems, Optical Society of America 2010 Massachusetts Ave., N.W. Washington, D.C. 20036-1012. pp. 116–120, USA (2004). doi: 10.1109/ICCS.2004.1359350Google Scholar
  61. 61.
    Lange, C., Braune, M., Gieschen, N.: On the energy consumption of FTTB and FTTH access networks. In: National Fiber Optic Engineers Conference, Optical Society of America 2010 Massachusetts Ave., N.W. Washington, D.C. 20036–1012 USA (2008)Google Scholar
  62. 62.
    Lee, C.H., Lee, S.M., Choi, K.M., Moon, J.H., Mun, S.G., Jeong, K.T., Kim, J.H., Kim, B.: WDM-PON experiences in Korea. J. Opt. Netw. 6(5), 451–464 (2007)CrossRefGoogle Scholar
  63. 63.
    Lee, C.H., Sorin, W.V., Kim, B.Y.: Fiber to the home using a PON infrastructure. IEEE/OSA J. Lightwave Tech. 24(12), 4568–4583 (2006). doi: 10.1109/JLT.2006.885779CrossRefGoogle Scholar
  64. 64.
    Lee, S., Chen, A.: Design and analysis of a novel energy efficient ethernet passive optical network. In: Ninth International Conference on Networks (ICN), pp. 6–9. IEEE Conference Publications, Piscataway, NJ (2010)Google Scholar
  65. 65.
    Lee, S.M., Mun, S.G., Kim, M.H., Lee, C.H.: Demonstration of a long-reach DWDM-PON for consolidation of metro and access networks. IEEE/OSA J. Lightwave Tech. 25(1), 271–276 (2007). doi: 10.1109/JLT.2006.887179CrossRefGoogle Scholar
  66. 66.
    Lenstra, J., Shmoys, D., Tardos, E.: Approximation algorithms for scheduling unrelated parallel machines. Math. Program. 46, 259–271 (1990)MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    Li, Y., Wang, J., Qiao, C., Gumaste, A., Xu, Y., Xu, Y.: Integrated fiber-wireless (FiWi) access networks supporting inter-ONU communications. IEEE/OSA J. Lightwave Tech. 28(5), 714–724 (2010)CrossRefGoogle Scholar
  68. 68.
    Limb, J., Sala, D.: A protocol for efficient transfer of data over hybrid fiber/coax systems. IEEE/ACM Trans. Netw. 5(6), 872–881 (1997)CrossRefGoogle Scholar
  69. 69.
    Luo, Y., Ansari, N.: Bandwidth allocation for multiservice access on EPONs. IEEE Comm. Mag. 43(2), S16–S21 (2005). doi: 10.1109/MCOM.2005.1391498CrossRefGoogle Scholar
  70. 70.
    Luo, Y., Ansari, N.: LSTP for dynamic bandwidth allocation and QoS provisioning over EPONs. OSA J. Opt. Netw. 4(9), 561–572 (2005)CrossRefGoogle Scholar
  71. 71.
    Luo, Y., Effenberger, F., Ansari, A.: Time synchronization over ethernet passive optical networks. IEEE Comm. Mag. 50(10) (2012)Google Scholar
  72. 72.
    Luo, Y., Effenberger, F., Sui, M.: Cloud computing provisioning over passive optical networks. In: First IEEE International Conference on Communications in China (ICCC2012), Beijing, China (2012)Google Scholar
  73. 73.
    Luo, Y., Yin, S., Ansari, N., Wang, T.: Resource management for broadband access over time-division multiplexed passive optical networks. Netw. IEEE 21(5), 20–27 (2007). doi: 10.1109/MNET.2007.4305168CrossRefGoogle Scholar
  74. 74.
    Luo, Y., Yin, S., Wang, T., Suemura, Y., Nakamura, S., Ansari, N., Cvijetic, M.: QoS-aware scheduling over hybrid optical wireless networks. In: Optical Fiber Communication and the National Fiber Optic Engineers Conference, pp. 1–7. IEEE Conference Publications, Piscataway, NJ (2007)Google Scholar
  75. 75.
    Mandin, J.: EPON power saving via sleep mode. In: IEEE P802.3av 10GEPON Task Force Meeting, IEEE 802 LAN/MAN Standards Committee, Piscataway, NJ (2008).
  76. 76.
    McGarry, M., Reisslein, M., Maier, M.: WDM Ethernet passive optical networks. IEEE Comm. Mag. 44(2), 15–22 (2006). doi: 10.1109/MCOM.2006.1593545CrossRefGoogle Scholar
  77. 77.
    McGarry, M.P., Reisslein, M., Colbourn, C.J., Maier, M., Aurzada, F., Scheutzow, M.: Just-in-time scheduling for multichannel EPONs. IEEE/OSA J. Lightwave Tech. 26(10), 1204–1216 (2008)CrossRefGoogle Scholar
  78. 78.
    McGarry, M.P., Reisslein, M., Maier, M., Keha, A.: Bandwidth management for WDM EPONs. OSA J. Opt. Netw. 5(9), 637–654 (2006)CrossRefGoogle Scholar
  79. 79.
    Meng, L., Assi, C., Maier, M., Dhaini, A.: Resource management in STARGATE-based Ethernet passive optical networks (SG-EPONs). IEEE/OSA J. Opt. Comm. Netw. 1(4), 279–293 (2009)CrossRefGoogle Scholar
  80. 80.
    Meng, L., El-Najjar, J., Alazemi, H., Assi, C.: A joint transmission grant scheduling and wavelength assignment in multichannel SG-EPON. J. Lightwave Tech. 27(21), 4781–4792 (2009)CrossRefGoogle Scholar
  81. 81.
    Nace, D., Pioro, M.: Max-min fairness and its applications to routing and load-balancing in communication networks: A tutorial. IEEE Comm. Surv. Tutor. 10(4), 5–17 (2008). doi: 10.1109/SURV.2008.080403CrossRefGoogle Scholar
  82. 82.
    Naser, H., Mouftah, H.: A joint-ONU interval-based dynamic scheduling algorithm for Ethernet passive optical networks. IEEE/ACM Trans. Netw. 14(4), 889–899 (2006). doi: 10.1109/TNET.2006.879698CrossRefGoogle Scholar
  83. 83.
    Oh, J.M., Koo, S.G., Lee, D., Park, S.J.: Enhancement of the performance of a reflective soa-based hybrid WDM/TDM PON system with a remotely pumped erbium-doped fiber amplifier. IEEE/OSA J. Lightwave Tech. 26(1), 144–149 (2008)CrossRefGoogle Scholar
  84. 84.
    Oh, S., Shin, J., Kim, K., Lee, D., Park, S., Sung, H., Baek, Y., Oh, K.: 200 GHz-spacing 8-channel multi-wavelength lasers for WDM-PON optical line terminal sources. Opt. Express 17(11), 9401–9407 (2009)CrossRefGoogle Scholar
  85. 85.
    Oyman, O., Foerster, J., Tcha, Y., Lee, S.: Toward enhanced mobile video services over WiMAX and LTE [WiMAX/LTE update]. IEEE Comm. Mag. 48(8), 68–76 (2010)CrossRefGoogle Scholar
  86. 86.
    Payne, D., Stern, J.: Transparent single-mode fiber optical networks. IEEE J. Lightwave Tech. 4(7), 864–869 (1986)CrossRefGoogle Scholar
  87. 87.
    Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Prentice Hall, Englewood Cliffs (2002)MATHGoogle Scholar
  88. 88.
    Potts, C.: Analysis of a linear programming heuristic for scheduling unrelated parallel machines. Discrete Appl. Math. 10, 155–164 (1985)MathSciNetMATHCrossRefGoogle Scholar
  89. 89.
    Qian, D., Cvijetic, N., Hu, J., Wang, T.: 108 Gb/s OFDMA-PON with polarization multiplexing and direct detection. IEE/OSA J. Lightwave Tech. 28(4), 484–493 (2010)CrossRefGoogle Scholar
  90. 90.
    Qian, D., et al.: 108 Gb/s OFDMA-PON with polarization multiplexing and direct detection. J. Lightwave Tech. 28(4), 484–493 (2010)CrossRefGoogle Scholar
  91. 91.
    Quax, P., Monsieurs, P., Lamotte, W., De Vleeschauwer, D., Degrande, N.: Objective and subjective evaluation of the influence of small amounts of delay and jitter on a recent first person shooter game. In: 3rd ACM SIGCOMM Workshop on Network and System Support for Games, pp. 152–156, ACM, New York (2004). doi:
  92. 92.
    Raake, A.: Short-and long-term packet loss behavior: towards speech quality prediction for arbitrary loss distributions. IEEE Trans. Audio Speech Lang. Process. 14(6), 1957–1968 (2006)CrossRefGoogle Scholar
  93. 93.
    Radunovic, B., Le Boudec, J.Y.: A unified framework for max-min and min-max fairness with applications. IEEE/ACM Trans. Netw. 15(5), 1073–1083 (2007). doi: 10.1109/ TNET.2007.896231CrossRefGoogle Scholar
  94. 94.
    Ramantas, K., Vlachos, K., Ellinas, G., Hadjiantonis, A.: Efficient resource management via dynamic bandwidth sharing in a WDM-PON ring-based architecture. In: 14th International Conference on Transparent Optical Networks (ICTON). IEEE Conference Publications, Piscataway, NJ (2012)Google Scholar
  95. 95.
    Reaz, A., Ramamurthi, V., Tornatore, M.: Cloud-over-WOBAN (CoW): An offloading-enabled access network design. In: IEEE International Conference on Communications (ICC). IEEE Conference Publications, Piscataway, NJ (2011)Google Scholar
  96. 96.
    Reaz, A., Ramamurthi, V., Tornatore, M., Mukherjee, B.: Green provisioning of cloud services over wireless-optical broadband access networks. In: Proceedings of the IEEE Globecom. IEEE Conference Publications, Piscataway, NJ (2011)Google Scholar
  97. 97.
    Reichl, P., Tuffin, B., Schatz, R.: Economics of logarithmic quality-of-experience in communication networks. In: The 9th Conference on Telecommunications Internet and Media Techno Economics (CTTE), pp. 1–8, IEEE Conference Publications, Piscataway, NJ (2010). doi: 10.1109/CTTE.2010.5557702Google Scholar
  98. 98.
    Sanneck, H., Carle, G., Koodli, R.: Framework model for packet loss metrics based on loss runlengths. In: SPIE/ACM SIGMM Multimedia Computing and Networking, ACM, New York (2000)Google Scholar
  99. 99.
    Sarkar, S., Yen, H., Dixit, S., Mukherjee, B.: A mixed integer programming model for optimum placement of base stations and optical network units in a hybrid wireless-optical broadband access network (WOBAN). In: IEEE Wireless Communications and Networking Conference (WCNC), pp. 3907–3911, IEEE, Piscataway, NJ (2007)Google Scholar
  100. 100.
    Sarkar, S., Yen, H., Dixit, S., Mukherjee, B.: Hybrid wireless-optical broadband access network (WOBAN): Network planning using Lagrangean relaxation. IEEE/ACM Trans. Netw. 17(4), 1094–1105 (2009)CrossRefGoogle Scholar
  101. 101.
    Shaw, W.T., Wong, S.W., Cheng, N., Balasubramanian, K., Zhu, X., Maier, M., Kazovsky, L.: Hybrid architecture and integrated routing in a scalable optical wireless access network. IEEE/OSA J. Lightwave Tech. 25(11), 3443–3451, IEEE Conference Publications, Piscataway, NJ (2007). doi: 10.1109/JLT.2007.909202Google Scholar
  102. 102.
    Shchepin, E.V., Vakhania, N.: An optimal rounding gives a better approximation for scheduling unrelated machines. Oper. Res. Lett. 33, 127–133 (2005)MathSciNetMATHCrossRefGoogle Scholar
  103. 103.
    Song, H., Kim, B., Mukherjee, B.: Multi-thread polling: A dynamic bandwidth distribution scheme in long-reach PON. IEEE J. Sel. Areas Comm. 27(2), 134–142 (2009)CrossRefGoogle Scholar
  104. 104.
    Tanaka, K.: 10G-EPON standardization and its development status. In: Optical Fiber Communication (OFC), pp. 1–20, 22–26, Optical Society of America 2010 Massachusetts Ave., N.W. Washington, D.C. 20036-1012 USA (2009)Google Scholar
  105. 105.
    Tasaka, S., Ishibashi, Y.: Mutually compensatory property of multimedia QoS. IEEE Int. Conf. Comm. 2, 1105–1111 (2002). doi: 10.1109/ICC.2002.997023Google Scholar
  106. 106.
    The carrier cloud. Strategic white paper (2011). Accessed on 2011
  107. 107.
    Tongia, R.: Can broadband over powerline carrier (PLC) compete? A techno-economic analysis. Telecomm. Policy 28(7–8), 559–578 (2004)Google Scholar
  108. 108.
    Vadgama, S.: Trends in green wireless access. Fujitsu Sci. Tech. J. 45(4), 404–408 (2009)Google Scholar
  109. 109.
    Verma, D., Zhang, H., Ferrari, D.: Delay jitter control for real-time communication in a packet switching network. In: IEEE TRICOMM, pp. 35–43, IEEE Conference Publications, Piscataway, NJ (1991). doi: 10.1109/TRICOM.1991.152873Google Scholar
  110. 110.
    Wang, C., Wei, W., Zhang, W., Jiang, H., Qiao, C., Wang, T.: Optimal wavelength scheduling for hybrid WDM/TDM passive optical networks. IEEE/OSA J. Opt. Comm. Netw. 3(6), 522–532 (2011)CrossRefGoogle Scholar
  111. 111.
    Wei, W., Wang, T., Qian, D., Hu, J.: MAC protocols for optical orthogonal frequency division multiple access (OFDMA)-based passive optical networks. In: Optical Fiber communication/National Fiber Optic Engineers Conference, OFC/NFOEC. Conference on, pp.1–3, 24–28, Optical Society of America 2010 Massachusetts Ave., N.W. Washington, D.C. 20036–1012 USA (2008). doi: 10.1109/OFC.2008.4528240Google Scholar
  112. 112.
    Weinstein, S., Luo, Y., Wang, T.: Passive Optical Networks. IEEE Conference Publications, Piscataway, NJ (2012)CrossRefGoogle Scholar
  113. 113.
    Wong, S-W., Valcarenghi, L., Yen, S-H., Campelo, D.R., Yamashita, S., Kazovsky, L.: Sleep Mode for Energy Saving PONs: Advantages and Drawbacks. In: IEEE GLOBECOM Workshops, pp. 1–6, IEEE Conference Publications, Piscataway, NJ (2009). doi: 10.1109/GLOCOMW.2009.5360736Google Scholar
  114. 114.
    Xue, D., Qin, Y., Siew, C.K.: Deterministic qos provisioning with network calculus based admission control in WDM EPON networks. In: IEEE International Conference on Communications, pp. 1–6, IEEE Conference Publications, Piscataway, NJ (2009). doi: 10.1109/ICC.2009.5198914Google Scholar
  115. 115.
    Yan, B., Guo, W., Jin, Y., Hu, W.: A novel dynamic wavelength bandwidth allocation scheme over OFDMA PONs. In: Asia Communications and Photonics Conference (ACP), vol. 8310, p. 17, IEEE Conference Publications, Piscataway, NJ (2011)Google Scholar
  116. 116.
    Yan, Y., Dittmann, L.: Energy efficiency in ethernet passive optical networks (EPONs): Protocol design and performance evaluation. J. Comm. 6(3), 249–261 (2011)Google Scholar
  117. 117.
    Yan, Y., Wong, S., Valcarenghi, L., Yen, S., Campelo, D., Yamashita, S., Kazovsky, L., Dittmann, L.: Energy management mechanism for ethernet passive optical networks (EPONs). In: IEEE International Conference on Communications (ICC). IEEE Conference Publications, Piscataway, NJ (2010)Google Scholar
  118. 118.
    Yang, C.: Code space enlargement for hybrid fiber radio and baseband OCDMA PONs. J. Lightwave Tech. 29(9), 1394–1400 (2011)CrossRefGoogle Scholar
  119. 119.
    Yeh, J., Chen, J., Lee, C.: Comparative Analysis of Energy-Saving Techniques in 3GPP and 3GPP2 Systems. IEEE Trans. Vehicular Tech. 58(1), 432–448 (2009)CrossRefGoogle Scholar
  120. 120.
    Yin, S., Ansari, N.: Nonlinear predictor-based dynamic resource allocation over point-to-multipoint (p2mp) networks: A control theoretical approach. IEEE/OSA J. Opt. Comm. Netw. 2(12), 1052–1062 (2010). doi: 10.1364/JOCN.2.001052CrossRefGoogle Scholar
  121. 121.
    Yoshino, M., Miki, N., Yoshimoto, N., Kumozaki, K.: Multiwavelength optical source for OCDM using sinusoidally modulated laser diode. IEEE/OSA J. Lightwave Tech. 27, 4524–4529 (2009)CrossRefGoogle Scholar
  122. 122.
    Yu, W., Ginis, G., Cioffi, J.: Distributed multiuser power control for digital subscriber lines. IEEE J. Sel. Areas Comm. 20(5), 1105–1115 (2002)CrossRefGoogle Scholar
  123. 123.
    Zhang, J., Ansari, N.: Utility max-min fair resource allocation for diversified applications in EPON. In: AccessNets, Hongkong, China (2009)Google Scholar
  124. 124.
    Zhang, J., Ansari, N.: An application-oriented resource allocation scheme for EPON. IEEE Syst. J. 4(4), 424–431 (2010)CrossRefGoogle Scholar
  125. 125.
    Zhang, J., Ansari, N.: Design of WDM PON with tunable lasers: The upstream scenario. IEEE/OSA J. Lightwave Tech. 28(2), 228–236 (2010)CrossRefGoogle Scholar
  126. 126.
    Zhang, J., Ansari, N.: Dynamic time allocation and wavelength assignment in next-generation multi-rate multi-wavelength passive optical networks. In: Proceedings of the IEEE ICC, Cape Town, South Africa (2010)Google Scholar
  127. 127.
    Zhang, J., Ansari, N.: On assuring end-to-end QoE in next generation networks: Challenges and a possible solution. IEEE Comm. Mag. 49(7), 185–191 (2011)CrossRefGoogle Scholar
  128. 128.
    Zhang, J., Ansari, N.: On OFDMA resource allocation and wavelength assignment in OFDMA-based WDM radio-over-fiber picocellular systems. IEEE J. Sel. Areas Comm. 29(6), 1273–1283 (2011) [Special Issue on Distributed Broadband Wireless Communications]Google Scholar
  129. 129.
    Zhang, J., Ansari, N.: On the capacity of WDM passive optical networks. IEEE Trans. Comm. 59(2), 552–559 (2011)CrossRefGoogle Scholar
  130. 130.
    Zhang, J., Ansari, N.: Scheduling hybrid WDM/TDM passive optical networks with non-zero laser tuning time. IEEE/ACM Trans. Netw. 19(4), 1014–1027 (2011)CrossRefGoogle Scholar
  131. 131.
    Zhang, J., Ansari, N.: Towards energy-efficient 1G-EPON and 10G-EPON with sleep-aware MAC control and scheduling. IEEE Comm. Mag. 49(2), S33–S38 (2011)CrossRefGoogle Scholar
  132. 132.
    Zhang, J., Ansari, N.: Extending onu lifetime beyond 72 hours in EPON for emergency communications. In: 2012 International Conference on Computing, Networking and Communications (ICNC), pp. 287–291. IEEE Conference Publications, Piscataway, NJ (2012)Google Scholar
  133. 133.
    Zhang, J., Ansari, N.: On preemptive multi-wavelength scheduling in hybrid WDM/TDM passive optical networks. IEEE/OSA J. Opt. Comm. Netw. 4, 238–247 (2012)CrossRefGoogle Scholar
  134. 134.
    Zhang, J., Ansari, N.: Standards-compliant EPON sleep control for energy efficiency: Design and analysis, Communications (ICC), pp. 2994–2998, 10–15, IEEE Conference Publication, Piscataway, NJ (2012). doi: 10.1109/ICC.2012.6364591Google Scholar
  135. 135.
    Zhang, J., Ansari, N., Luo, Y., Effenberger, F., Ye, F.: Next-generation PONs: A performance investigation of candidate architectures for next-generation access stage 1. IEEE Comm. Mag. 47(8), 49–57 (2009). doi: 10.1109/MCOM.2009.5181892CrossRefGoogle Scholar
  136. 136.
    Zhang, J., Wang, T., Ansari, N.: Designing energy-efficient optical line terminal for TDM passive optical networks. In: 34th IEEE Sarnoff Symposium. IEEE Conference Publications, Piscataway, NJ (2011)Google Scholar
  137. 137.
    Zhang, J., Wang, T., Ansari, N.: An efficient MAC protocol for asynchronous ONUs in OFDMA PONs. In: Proceedings of Optical Fiber Communication Conference and Exposition (OFC), Optical Society of America 2010 Massachusetts Ave., N.W. Washington, D.C. 20036–1012, USA (2011)Google Scholar
  138. 138.
    Zheng, J., Mouftah, H.: Media access control for Ethernet passive optical networks: An overview. IEEE Comm. Mag. 43(2), 145–150 (2005). doi: 10.1109/MCOM.2005.1391515CrossRefGoogle Scholar

Copyright information

© The Authors 2013

Authors and Affiliations

  • Nirwan Ansari
    • 1
  • Jingjing Zhang
    • 2
  1. 1.New Jersey Institute of TechnologyNewarkUSA
  2. 2.Arista NetworksSanta ClaraUSA

Personalised recommendations