Skip to main content

Exploring the Unique Characteristics of LSPR Biosensing

  • Chapter
  • First Online:

Part of the book series: Integrated Analytical Systems ((ANASYS))

Abstract

Plasmonic biosensors based on the localized surface plasmon resonance (LSPR) of metal nanoparticles have been developed using both nanoparticle arrays and single nanoparticles. We introduce LSPR biosensing by describing the initial experiments performed using both model systems and disease biomarkers. LSPR shift-enhancement methods, exploitation of the short electromagnetic field decay length, and single nanoparticle sensors are discussed as pathways to further exploit the strengths of LSPR biosensing. Coupling molecular identification to LSPR spectroscopy is a significant aspect of biosensing. Therefore, examples from surface-enhanced Raman spectroscopy and laser desorption ionization mass spectrometry are provided. This chapter highlights examples which emphasize the unique characteristics of LSPR biosensing.

*The authors Julia M. Bingham and W. Paige Hall contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Englebienne P. Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst. 1998;123:1599–603.

    Article  CAS  Google Scholar 

  2. Jeanmaire DL, Van Duyne RP. Surface Raman spectroelectrochemistry part I: heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem. 1977;84:1–20.

    Article  CAS  Google Scholar 

  3. Albrecht MG, Creighton JA. Anomalously intense Raman spectra of pyridine at a silver electrode. J Am Chem Soc. 1977;99:5215–9.

    Article  CAS  Google Scholar 

  4. Hulteen JC, Treichel DA, Van Duyne RP. Atomic force microscopy and surface-enhanced Raman spectroscopy. I. Ag island films and Ag film over polymer nanosphere surfaces supported on glass. J Chem Phys. 1993;99:2101–15.

    Article  Google Scholar 

  5. Hulteen JC, Van Duyne RP. Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces. J Vac Sci Technol A. 1995;13:1553–8.

    Article  Google Scholar 

  6. Haes AJ, Zou S, Schatz GC, Van Duyne RP. A nanoscale optical biosensor: the long-range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B. 2004;108:109–16.

    Article  CAS  Google Scholar 

  7. Haes AJ, Zou S, Schatz GC, Van Duyne RP. A nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J Phys Chem B. 2004;108:6961–8.

    Article  CAS  Google Scholar 

  8. McFarland AD, Young MA, Dieringer JA, Van Duyne RP. Wavelength-scanned surface-enhanced Raman excitation spectroscopy. J Phys Chem B. 2005;109:11279–85.

    Article  CAS  Google Scholar 

  9. Leuvering JH, Thal PJ, van der Waart M, Schuurs AH. Sol particle immunoassay (SPIA). J Immunoassay. 1980;1:77–91.

    Article  CAS  Google Scholar 

  10. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science. 1997;277:1078–81.

    Article  CAS  Google Scholar 

  11. Haes AJ, Van Duyne RP. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc. 2002;124:10596–604.

    Article  CAS  Google Scholar 

  12. Riboh JC, Haes AJ, McFarland AD, Yonzon CR, Van Duyne RP. A nanoscale optical biosensor: real-time immunoassay in physiological buffer enabled by improved nanoparticle adhesion. J Phys Chem B. 2003;107:1772–80.

    Article  CAS  Google Scholar 

  13. Haes AJ, Chang L, Klein WL, Van Duyne RP. Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc. 2005;127:2264–71.

    Article  CAS  Google Scholar 

  14. Yonzon CR, Jeoung E, Zou S, Schatz GC, Mrksich M, Van Duyne RP. A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer. J Am Chem Soc. 2004;126:12669–76.

    Article  CAS  Google Scholar 

  15. Whitney AV, Elam JW, Zou S, Zinovev AV, Stair PC, Schatz GC, et al. Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition. J Phys Chem B. 2005;109:20522–8.

    Article  CAS  Google Scholar 

  16. Haes AJ, Zou S, Zhao J, Schatz GC, Van Duyne RP. Localized surface plasmon resonance spectroscopy near molecular resonances. J Am Chem Soc. 2006;128:10905–14.

    Article  CAS  Google Scholar 

  17. Zhao J, Das A, Zhang XY, Schatz GC, Sligar SG, Van Duyne RP. Resonance surface plasmon spectroscopy: low molecular weight substrate binding to cytochrome P450. J Am Chem Soc. 2006;128:11004–5.

    Article  CAS  Google Scholar 

  18. Zhao J, Jensen L, Sung J, Zou S, Schatz GC, Van Duyne RP. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles. J Am Chem Soc. 2007;129:7647–56.

    Article  CAS  Google Scholar 

  19. Lipscomb JD, Gunsalus IC. Structural aspects of the active site of cytochrome P-450cam. Drug Metab Dispos. 1973;1:1–5.

    CAS  Google Scholar 

  20. Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, et al. The catalytic pathway of cytochrome P450cam at atomic resolution. Science. 2000;287:1615–22.

    Article  CAS  Google Scholar 

  21. Sligar SG. Coupling of spin, substrate, and redox equilibriums in cytochrome P450. Biochemistry. 1976;15:5399–406.

    Article  CAS  Google Scholar 

  22. He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, et al. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc. 2000;122:9071–7.

    Article  CAS  Google Scholar 

  23. Lyon LA, Musick MD, Natan MJ. Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal Chem. 1998;70:5177–83.

    Article  CAS  Google Scholar 

  24. Buckle PE, Davies RJ, Kinning T, Yeung D, Edwards PR, Pollard-Knight D. The resonant mirror: a novel optical sensor for direct sensing of biomolecular interactions part II: applications. Biosens Bioelectron. 1993;8:355–63.

    Article  CAS  Google Scholar 

  25. Hall WP, Ngatia SN, Van Duyne RP. LSPR biosensor signal enhancement using nanoparticle-antibody conjugates. J Phys Chem C. 2011;115:1410–4.

    Article  CAS  Google Scholar 

  26. Gunnarsson L, Rindzevicius T, Prikulis J, Kasemo B, Kall M, Zou SL, et al. Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. J Phys Chem B. 2005;109:1079–87.

    Article  CAS  Google Scholar 

  27. Su KH, Wei QH, Zhang X, Mock JJ, Smith DR, Schultz S. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 2003;3:1087–90.

    Article  CAS  Google Scholar 

  28. Jain PK, Huang WY, El-Sayed MA. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett. 2007;7:2080–8.

    Article  CAS  Google Scholar 

  29. Sonnichsen C, Reinhard BM, Liphardt J, Alivisatos AP. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol. 2005;23:741–5.

    Article  Google Scholar 

  30. Reinhard BM, Sheikholeslami S, Mastroianni A, Alivisatos AP, Liphardt J. Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. Proc Natl Acad Sci U S A. 2007;104:2667–72.

    Article  CAS  Google Scholar 

  31. Schatz GC, Van Duyne Richard P. Electromagnetic mechanism of surface-enhance spectroscopy. In: Chalmers JM, Griffiths PR, editors. Handbook of vibrational spectroscopy. Chichester: Wiley; 2002.

    Google Scholar 

  32. Hall WP, Anker JN, Lin Y, Modica J, Mrksich M, Van Duyne RP. A calcium-modulated plasmonic switch. J Am Chem Soc. 2008;130:5836–7.

    Article  CAS  Google Scholar 

  33. Ishima R, Torchia DA. Protein dynamics from NMR. Nat Struct Biol. 2000;7:740–3.

    Article  CAS  Google Scholar 

  34. Heyduk T. Measuring protein conformational changes by FRET/LRET. Curr Opin Biotechnol. 2002;13:292–6.

    Article  CAS  Google Scholar 

  35. Lipfert J, Doniach S. Small-angle X-ray scattering from RNA, proteins, and protein complexes. Ann Rev Biophys Biomol Struct. 2007;36:307–27.

    Article  CAS  Google Scholar 

  36. Paynter S, Russell DA. Surface plasmon resonance measurement of pH-induced responses of immobilized biomolecules: conformational change or electrostatic interaction effects? Anal Biochem. 2002;309:85–95.

    Article  CAS  Google Scholar 

  37. Jonsson MP, Joensson P, Dahlin AB, Hoeoek F. Supported lipid bilayer formation and lipid-membrane-mediated biorecognition reactions studied with a new nanoplasmonic sensor template. Nano Lett. 2007;7:3462–8.

    Article  CAS  Google Scholar 

  38. Chah S, Hammond MR, Zare RN. Gold nanoparticles as a colorimetric sensor for protein conformational changes. Chem Biol. 2005;12:323–8.

    Article  CAS  Google Scholar 

  39. Dahlin AB, Tegenfeldt JO, Hook F. Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal Chem. 2006;78:4416–23.

    Article  CAS  Google Scholar 

  40. Hodneland CD, Lee Y-S, Min D-H, Mrksich M. Selective immobilization of proteins to self-assembled monolayers presenting active site-directed capture ligands. Proc Natl Acad Sci U S A. 2002;99:5048–52.

    Article  CAS  Google Scholar 

  41. Deng C, Zhang X, Li N. Investigation of volatile biomarkers in lung cancer blood using solid-phase microextraction and capillary gas chromatography-mass spectrometry. J Chromatogr B. 2004;808:269–77.

    Article  CAS  Google Scholar 

  42. Nylander C, Liedberg B, Lind T. Gas detection by means of surface plasmon resonance. Sens Actuators. 1982;3:79–88.

    Article  CAS  Google Scholar 

  43. Liedberg B, Nylander C, Lunström I. Surface plasmon resonance for gas detection and biosensing. Sens Actuators. 1983;4:299–304.

    Article  CAS  Google Scholar 

  44. Bingham JM. PhD Dissertation, Fundamental and applied localized surface plasmon resonance spectroscopy studies from nanoparticle arrays to single nanoparticles. Northwestern University; 2010.

    Google Scholar 

  45. Bingham JM, Anker JN, Kreno LE, Van Duyne RP. Gas sensing with high-resolution localized surface plasmon resonance spectroscopy. J Am Chem Soc. 2010;132:17358–9.

    Article  CAS  Google Scholar 

  46. Kreno LE, Hupp JT, Van Duyne RP. Metal–organic framework thin film for enhanced localized surface plasmon resonance gas sensing. Anal Chem. 2010;82:8042–6.

    Article  CAS  Google Scholar 

  47. McFarland AD, Van Duyne RP. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 2003;3:1057–62.

    Article  CAS  Google Scholar 

  48. Raschke G, Kowarik S, Franzl T, Sonnichsen C, Klar TA, Feldmann J, et al. Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 2003;3:935–8.

    Article  CAS  Google Scholar 

  49. Van Duyne RP, Haes AJ, McFarland AD. Nanoparticle optics: sensing with nanoparticle arrays and single nanoparticles. Proc SPIE Int Soc Opt Eng. 2003;5223:197–207.

    Google Scholar 

  50. Bingham JM, Willets KA, Shah NC, Andrews DQ, Van Duyne Richard P. Localized surface plasmon resonance imaging: simultaneous single nanoparticle spectroscopy and diffusional dynamics. J Phys Chem C. 2009;113:16839–42.

    Article  CAS  Google Scholar 

  51. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys. 2002;116:6755–9.

    Article  CAS  Google Scholar 

  52. Sherry LJ, Chang S-H, Schatz GC, Van Duyne RP, Wiley BJ, Xia Y. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett. 2005;5:2034–8.

    Article  CAS  Google Scholar 

  53. Sherry LJ, Jin R, Mirkin CA, Schatz GC, Van Duyne RP. Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms. Nano Lett. 2006;6:2060–5.

    Article  CAS  Google Scholar 

  54. Nallathamby PD, Lee KJ, Xu X-H. Design of stable and uniform single nanoparticle photonics for in vivo dynamics imaging of nanoenvironments of zebrafish embryonic fluids. ACS Nano. 2008;2:1371–80.

    Article  CAS  Google Scholar 

  55. Qian H, Sheetz MP, Elson EL. Single particle tracking: analysis of diffusion and flow in two-dimensional systems. Biophys J. 1991;60:910–21.

    Article  CAS  Google Scholar 

  56. Saxton MJ. Single-particle tracking: the distribution of diffusion coefficients. Biophys J. 1997;72:1744–53.

    Article  CAS  Google Scholar 

  57. Saxton MJ, Jacobson K. Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct. 1997;26:373–99.

    Article  CAS  Google Scholar 

  58. Suzuki KGN, Fujiwara TK, Sanematsu F, Iino R, Edidin M, Kusumi A. GPI-anchored receptor clusters transiently recruit Lyn and Galpha for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J Cell Biol. 2007;177:717–30.

    Article  CAS  Google Scholar 

  59. Vrljic M, Nishimura SY, Brasselet S, Moerner WE, McConnell HM. Translational diffusion of individual class II MHC membrane proteins in cells. Biophys J. 2002;83:2681–92.

    Article  CAS  Google Scholar 

  60. Vrljic M, Nishimura SY, Moerner WE, McConnell HM. Cholesterol depletion suppresses the translational diffusion of class II major histocompatibility complex proteins in the plasma membrane. Biophys J. 2005;88:334–47.

    Article  CAS  Google Scholar 

  61. Jin RC, Cao YW, Mirkin CA, Kelly KL, Schatz GC, Zheng JG. Photoinduced conversion of silver nanospheres to nanoprisms. Science. 2001;294:1901–3.

    Article  CAS  Google Scholar 

  62. Dieringer JA, Lettan II RB, Scheidt KA, Van Duyne RP. A frequency domain existence proof of single-molecule surface-enhanced Raman spectroscopy. J Am Chem Soc. 2007;129:16249–56.

    Article  CAS  Google Scholar 

  63. Lyandres O, Shah NC, Yonzon CR, Walsh Jr JT, Glucksberg MR, Van Duyne RP. Real-time glucose sensing by surface-enhanced Raman spectroscopy in bovine plasma facilitated by a mixed decanethiol/mercaptohexanol partition layer. Anal Chem. 2005;77:6134–9.

    Article  CAS  Google Scholar 

  64. Lyandres O, Yuen JM, Shah NC, VanDuyne RP, Walsh Jr JT, Glucksberg MR. Progress toward an in vivo surface-enhanced Raman spectroscopy glucose sensor. Diabetes Technol Ther. 2008;10:257–65.

    Article  CAS  Google Scholar 

  65. Zhang X, Young MA, Lyandres O, Van Duyne RP. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J Am Chem Soc. 2005;127:4484–9.

    Article  CAS  Google Scholar 

  66. Zhang X, Zhao J, Whitney AV, Elam JW, Van Duyne RP. Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J Am Chem Soc. 2006;128:10304–9.

    Article  CAS  Google Scholar 

  67. Burlingame AL, Boyd RK, Gaskell SJ. Mass spectrometry. Anal Chem. 1996;68:599R–651.

    Article  CAS  Google Scholar 

  68. Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature. 2003;422:198–207.

    Article  CAS  Google Scholar 

  69. Anker JN, Hall WP, Lambert MP, Velasco PT, Mrksich M, Klein WL, et al. Detection and identification of bioanalytes with high-resolution LSPR spectroscopy and MALDI mass spectrometry. J Phys Chem C. 2009;113:5891–4.

    Article  CAS  Google Scholar 

  70. Wustholz KL, Henry A-I, Bingham JM, Kleinman SL, Natan MJ, Freeman RG, et al. Exploring single-molecule SERS and single-nanoparticle plasmon microscopy. Proc SPIE Int Soc Opt Eng. 2009;7394.

    Google Scholar 

  71. Qian X, Peng X-H, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, et al. In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol. 2008;26:83–90.

    Article  CAS  Google Scholar 

  72. Zavaleta CL, Smith BR, Walton I, Doering W, Davis G, Shojaei B, et al. Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc Natl Acad Sci U S A. 2009;106:13511–6.

    Article  CAS  Google Scholar 

  73. Porter MD, Lipert RJ, Siperko LM, Wang G, Narayanan R. SERS as a bioassay platform: fundamentals, design, and applications. Chem Soc Rev. 2008;37:1001–11.

    Article  CAS  Google Scholar 

  74. McMahon JA, Wang YM, Sherry LJ, Van Duyne RP, Marks LD, Gray SK, et al. Correlating the structure, optical spectra, and electrodynamics of single silver nanocubes. J Phys Chem C. 2009;113:2731–5.

    Article  CAS  Google Scholar 

  75. Munechika K, Smith JM, Chen Y, Ginger DS. Plasmon line widths of single silver nanoprisms as a function of particle size and plasmon peak position. J Phys Chem C. 2007;111:18906–11.

    Article  CAS  Google Scholar 

  76. Stiles RL, Willets KA, Sherry LJ, Roden JM, Van Duyne RP. Investigating tip-nanoparticle interactions in spatially correlated total internal reflection plasmon spectroscopy and atomic force microscopy. J Phys Chem C. 2008;112:11696–701.

    Article  CAS  Google Scholar 

  77. Piner RD, Zhu J, Xu F, Hong S, Mirkin CA. Dip Pen nanolithography. Science. 1999;283:661–3.

    Article  CAS  Google Scholar 

  78. Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM. New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev. 2005;105:1171–96.

    Article  CAS  Google Scholar 

  79. Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54:631–51.

    Article  CAS  Google Scholar 

  80. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5:161–71.

    Article  CAS  Google Scholar 

  81. Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng. 2007;9:257–88.

    Article  CAS  Google Scholar 

  82. Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov. 2008;7:771–82.

    Article  CAS  Google Scholar 

  83. Cognet L, Berciaud S, Lasne D, Lounis B. Photothermal methods for single nonluminescent nano-objects. Anal Chem. 2008;80:2288–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This research was supported by the National Science Foundation (Grants EEC-0647560, CHE-0911145, and BES-0507036), the NSF MRSEC (DMR-0520513) at the Materials Research Center of Northwestern University, the AFOSR/DARPA Project BAA07-61 (FA9550-08-1-0221), the NIH (5R56DK078691-02), the NCI (1 U54 CA119341-01), and a Ryan Fellowship to W.P.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard P. Van Duyne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bingham, J.M., Hall, W.P., Van Duyne, R.P. (2012). Exploring the Unique Characteristics of LSPR Biosensing. In: Dmitriev, A. (eds) Nanoplasmonic Sensors. Integrated Analytical Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3933-2_2

Download citation

Publish with us

Policies and ethics