Skip to main content

Sensor Scheduling for Space Object Tracking and Collision Alert

  • Conference paper
  • First Online:
Dynamics of Information Systems: Mathematical Foundations

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 20))

Abstract

Given the increasingly dense environment in both low-earth orbit (LEO) and geostationary orbit (GEO), a sudden change in the trajectory of any existing resident space object (RSO) may cause potential collision damage to space assets. With a constellation of EO/IR sensor platforms and ground radar surveillance systems, it is important to design optimal estimation algorithm for updating nonlinear object states and allocating sensing resources to effectively avoid collisions among many RSOs. We consider N space objects being observed by M sensors whose task is to provide the minimum mean square estimation error of the overall system subject to the cost associated with each measurement. To simplify the analysis, we assume that sensors can switch between objects instantaneously subject to additional resource and sensing geometry constraints. We first formulate the sensor scheduling problem using the optimal control formalism and then derive a tractable relaxation of the original optimization problem, which provides a lower bound on the achievable performance. We propose an open-loop periodic switching policy whose performance can approach the theoretical lower bound closely. We also discuss a special case of identical sensors and derive an index policy that coincides with the general solution to restless multi-armed bandit problem by Whittle. Finally, we demonstrate the effectiveness of the resulting sensor management scheme for space situational awareness using a realistic space object tracking simulator with both unintentional and intentional maneuvers by RSOs that may lead to collision. Our sensor scheduling scheme outperforms the conventional information gain and covariance control based schemes in the overall tracking accuracy as well as making earlier declaration of collision events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software. Wiley, New York (2001)

    Book  Google Scholar 

  2. Bertsekas, D.: Dynamic Programming and Optimal Control (2nd edn.). Athena Scientific, Belmont (2001)

    MATH  Google Scholar 

  3. Birkhoff, G.: Tres observaciones sobre el algebra lineal. Univ. Nac. Tucuman Rev. 5, 147–151 (1946)

    MathSciNet  MATH  Google Scholar 

  4. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    MATH  Google Scholar 

  5. Boyko, N., Turko, T., Boginski, V., Jeffcoat, D.E., Uryasev, S., Zrazhevsky, G., Pardalos, P.M.: Robust multi-sensor scheduling for multi-site surveillance. J. Comb. Optim. 22(1), 35–51 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carme, S., Pham, D.-T., Verron, J.: Improving the singular evolutive extended Kalman filter for strongly nonlinear models for use in ocean data assimilation. Inverse Probl. 17, 1535–1559 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carpanese, N.: Periodic Riccati difference equation: approaching equilibria by implicit systems. IEEE Trans. Autom. Contr. 45(7), 1391–1396 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang, C., Chen, W., Huang, H.: Birkhoff-von Neumann input buffered crossbar switches. In: Proc. IEEE INFORCOM. 3, 1614–1623 (2000)

    Google Scholar 

  9. Chen, H., Chen, G., Blasch, E.P., Pham, K.: Comparison of several space target tracking filters. In: Proceedings of SPIE Defense, Security Sensing, vol. 7730, Orlando (2009)

    Google Scholar 

  10. Chen, H., Chen, G., Shen, D., Blasch, E.P., Pham, K.: Orbital evasive target tracking and sensor management. In: Dynamics of Information Systems: Theory and Applications. Hirsch, M.J., Pardalos, P.M., Murphey, R. (eds.), Lecture Notes in Control and Information Sciences. Springer, New York (2010)

    Google Scholar 

  11. Daum, F.E.: Exact finite-dimensional nonlinear filters. IEEE Trans. Autom. Contr. 31, 616–622 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. Daum, F.E.: Nonlinear filters: beyond the Kalman filter. IEEE Aerosp. Electron. Syst. Mag. 20, 57–69 (2005)

    Article  Google Scholar 

  13. Doucet, A., de Frietas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in Practice. Statistics for Engineering and Information Science. Springer, New York (2001)

    MATH  Google Scholar 

  14. Evensen, G.: Data Assimilation: The Ensemble Kalman Filter. Springer, New York (2006)

    Google Scholar 

  15. Gilks, W.R., Berzuini, C.: Following a moving target—Monte Carlo inference for dynamic Bayesian models. J. R. Stat. Soc. B 63, 127–146 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gittins, J.C., Jones, D.M.: A dynamic allocation index for the sequential design of experiments. In: Progress in Statistics (European Meeting of Statisticians) (1972)

    Google Scholar 

  17. Gordon, N., Salmond, D., Smith, A.F.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F 140(2), 107–113 (1993)

    Google Scholar 

  18. Guha, S., Munagala, K.: Approximation algorithms for budgeted learning problems. In: Proceedings ACM Symposium on Theory of Computing (2007)

    Google Scholar 

  19. Houtekamer, P.L., Mitchell, H.L.: Data assimilation using an ensemble Kalman filter technique. Monthly Weather Rev. 126, 796–811 (1998)

    Article  Google Scholar 

  20. Julier, S., Uhlmann, J., Durrant-Whyte, H.F.: A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Contr. 45, 477–482 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Julier, S., Uhlmann, J.: Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401–422 (2004)

    Article  Google Scholar 

  22. Kalandros, M., Pao, L.Y.: Covariance control for multisensor systems. IEEE Trans. Aerosp. Electron. Syst. 38, 1138–1157 (2002)

    Article  Google Scholar 

  23. Kreucher, C.M., Hero, A.O., Kastella, K.D., Morelande, M.R.: An information based approach to sensor management in large dynamic networks. Proc. IEEE 95, 978–999 (2007)

    Article  Google Scholar 

  24. Lemaitre, M., Verfaille, G., Jouhaud, F., Lachiver, J.M., Bataille N.: Selecting and scheduling observations of agile satellites. Aerosp. Sci. Technol. 6, 367–381 (2002)

    Article  Google Scholar 

  25. Li, X.R., Jilkov, V.P.: A survey of maneuvering target tracking: approximation techniques for nonlinear filtering. In: Proceedings of SPIE Conference on Signal and Data Processing of Small Targets, vol. 5428–62, Orlando (2004)

    Google Scholar 

  26. Maus, A., Chen, H., Oduwole, A., Charalampidis, D.: Designing collision alert system for space situational awareness. In: 20th ANNIE Conference, St. Louis, MO (2010)

    Google Scholar 

  27. Nino-Mora, J.: Restless bandits, partial conservation laws and indexability. Adv. Appl. Prob. 33, 76–98 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Papadimitriou, C., Tsitsiklis, J.: The complexity of optimal queueing network control. Math. Oper. Res. 2, 293–305 (1999)

    Article  MathSciNet  Google Scholar 

  29. Ru, J., Chen, H., Li, X.R., Chen, G.: A range rate based detection technique for tracking a maneuvering target. In: Proceedings of SPIE Conference on Signal and Data Processing of Small Targets (2005)

    Google Scholar 

  30. Sage, A., Melsa, J.: Estimation Theory with Applications to Communications and Control. McGraw-Hill, USA (1971)

    MATH  Google Scholar 

  31. Sorokin, A., Boyko, N., Boginski, V., Uryasev, S., Pardalos, P.M.: Mathematical programming tehcniques for sensor networks. Algorithms 2, 565–581 (2009)

    Article  Google Scholar 

  32. Van Trees, H.L.: Detection, Estimation, and Modulation Theory, Part I. Wiley, New York (1968)

    MATH  Google Scholar 

  33. Whittle, P.: Restless bandits: Activity allocation in a changing world. J. Appl. Probab. 25, 287–298 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

H. Chen was supported in part by ARO through grant W911NF- 08-1-0409, ONR-DEPSCoR through grant N00014-09-1-1169 and Office of Research & Sponsored Programs at University of New Orleans. The authors are grateful to the anonymous reviewers for their constructive comments to an earlier draft of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khanh Pham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this paper

Cite this paper

Chen, H., Shen, D., Chen, G., Pham, K. (2012). Sensor Scheduling for Space Object Tracking and Collision Alert. In: Sorokin, A., Murphey, R., Thai, M., Pardalos, P. (eds) Dynamics of Information Systems: Mathematical Foundations. Springer Proceedings in Mathematics & Statistics, vol 20. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3906-6_9

Download citation

Publish with us

Policies and ethics