Sensor Scheduling for Space Object Tracking and Collision Alert

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 20)


Given the increasingly dense environment in both low-earth orbit (LEO) and geostationary orbit (GEO), a sudden change in the trajectory of any existing resident space object (RSO) may cause potential collision damage to space assets. With a constellation of EO/IR sensor platforms and ground radar surveillance systems, it is important to design optimal estimation algorithm for updating nonlinear object states and allocating sensing resources to effectively avoid collisions among many RSOs. We consider N space objects being observed by M sensors whose task is to provide the minimum mean square estimation error of the overall system subject to the cost associated with each measurement. To simplify the analysis, we assume that sensors can switch between objects instantaneously subject to additional resource and sensing geometry constraints. We first formulate the sensor scheduling problem using the optimal control formalism and then derive a tractable relaxation of the original optimization problem, which provides a lower bound on the achievable performance. We propose an open-loop periodic switching policy whose performance can approach the theoretical lower bound closely. We also discuss a special case of identical sensors and derive an index policy that coincides with the general solution to restless multi-armed bandit problem by Whittle. Finally, we demonstrate the effectiveness of the resulting sensor management scheme for space situational awareness using a realistic space object tracking simulator with both unintentional and intentional maneuvers by RSOs that may lead to collision. Our sensor scheduling scheme outperforms the conventional information gain and covariance control based schemes in the overall tracking accuracy as well as making earlier declaration of collision events.


Sensor management Sensor scheduling Nonlinear filtering Kalman filter Restless multi-armed bandit Space object tracking Collision alert Situational awareness 



H. Chen was supported in part by ARO through grant W911NF- 08-1-0409, ONR-DEPSCoR through grant N00014-09-1-1169 and Office of Research & Sponsored Programs at University of New Orleans. The authors are grateful to the anonymous reviewers for their constructive comments to an earlier draft of this work.


  1. 1.
    Bar-Shalom, Y., Li, X.R., Kirubarajan, T.: Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software. Wiley, New York (2001)CrossRefGoogle Scholar
  2. 2.
    Bertsekas, D.: Dynamic Programming and Optimal Control (2nd edn.). Athena Scientific, Belmont (2001)MATHGoogle Scholar
  3. 3.
    Birkhoff, G.: Tres observaciones sobre el algebra lineal. Univ. Nac. Tucuman Rev. 5, 147–151 (1946)MathSciNetMATHGoogle Scholar
  4. 4.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)MATHGoogle Scholar
  5. 5.
    Boyko, N., Turko, T., Boginski, V., Jeffcoat, D.E., Uryasev, S., Zrazhevsky, G., Pardalos, P.M.: Robust multi-sensor scheduling for multi-site surveillance. J. Comb. Optim. 22(1), 35–51 (2011)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Carme, S., Pham, D.-T., Verron, J.: Improving the singular evolutive extended Kalman filter for strongly nonlinear models for use in ocean data assimilation. Inverse Probl. 17, 1535–1559 (2001)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Carpanese, N.: Periodic Riccati difference equation: approaching equilibria by implicit systems. IEEE Trans. Autom. Contr. 45(7), 1391–1396 (2000)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Chang, C., Chen, W., Huang, H.: Birkhoff-von Neumann input buffered crossbar switches. In: Proc. IEEE INFORCOM. 3, 1614–1623 (2000)Google Scholar
  9. 9.
    Chen, H., Chen, G., Blasch, E.P., Pham, K.: Comparison of several space target tracking filters. In: Proceedings of SPIE Defense, Security Sensing, vol. 7730, Orlando (2009)Google Scholar
  10. 10.
    Chen, H., Chen, G., Shen, D., Blasch, E.P., Pham, K.: Orbital evasive target tracking and sensor management. In: Dynamics of Information Systems: Theory and Applications. Hirsch, M.J., Pardalos, P.M., Murphey, R. (eds.), Lecture Notes in Control and Information Sciences. Springer, New York (2010)Google Scholar
  11. 11.
    Daum, F.E.: Exact finite-dimensional nonlinear filters. IEEE Trans. Autom. Contr. 31, 616–622 (1986)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Daum, F.E.: Nonlinear filters: beyond the Kalman filter. IEEE Aerosp. Electron. Syst. Mag. 20, 57–69 (2005)CrossRefGoogle Scholar
  13. 13.
    Doucet, A., de Frietas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in Practice. Statistics for Engineering and Information Science. Springer, New York (2001)MATHGoogle Scholar
  14. 14.
    Evensen, G.: Data Assimilation: The Ensemble Kalman Filter. Springer, New York (2006)Google Scholar
  15. 15.
    Gilks, W.R., Berzuini, C.: Following a moving target—Monte Carlo inference for dynamic Bayesian models. J. R. Stat. Soc. B 63, 127–146 (2001)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Gittins, J.C., Jones, D.M.: A dynamic allocation index for the sequential design of experiments. In: Progress in Statistics (European Meeting of Statisticians) (1972)Google Scholar
  17. 17.
    Gordon, N., Salmond, D., Smith, A.F.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F 140(2), 107–113 (1993)Google Scholar
  18. 18.
    Guha, S., Munagala, K.: Approximation algorithms for budgeted learning problems. In: Proceedings ACM Symposium on Theory of Computing (2007)Google Scholar
  19. 19.
    Houtekamer, P.L., Mitchell, H.L.: Data assimilation using an ensemble Kalman filter technique. Monthly Weather Rev. 126, 796–811 (1998)CrossRefGoogle Scholar
  20. 20.
    Julier, S., Uhlmann, J., Durrant-Whyte, H.F.: A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans. Autom. Contr. 45, 477–482 (2000)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Julier, S., Uhlmann, J.: Unscented filtering and nonlinear estimation. Proc. IEEE 92(3), 401–422 (2004)CrossRefGoogle Scholar
  22. 22.
    Kalandros, M., Pao, L.Y.: Covariance control for multisensor systems. IEEE Trans. Aerosp. Electron. Syst. 38, 1138–1157 (2002)CrossRefGoogle Scholar
  23. 23.
    Kreucher, C.M., Hero, A.O., Kastella, K.D., Morelande, M.R.: An information based approach to sensor management in large dynamic networks. Proc. IEEE 95, 978–999 (2007)CrossRefGoogle Scholar
  24. 24.
    Lemaitre, M., Verfaille, G., Jouhaud, F., Lachiver, J.M., Bataille N.: Selecting and scheduling observations of agile satellites. Aerosp. Sci. Technol. 6, 367–381 (2002)CrossRefGoogle Scholar
  25. 25.
    Li, X.R., Jilkov, V.P.: A survey of maneuvering target tracking: approximation techniques for nonlinear filtering. In: Proceedings of SPIE Conference on Signal and Data Processing of Small Targets, vol. 5428–62, Orlando (2004)Google Scholar
  26. 26.
    Maus, A., Chen, H., Oduwole, A., Charalampidis, D.: Designing collision alert system for space situational awareness. In: 20th ANNIE Conference, St. Louis, MO (2010)Google Scholar
  27. 27.
    Nino-Mora, J.: Restless bandits, partial conservation laws and indexability. Adv. Appl. Prob. 33, 76–98 (2001)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Papadimitriou, C., Tsitsiklis, J.: The complexity of optimal queueing network control. Math. Oper. Res. 2, 293–305 (1999)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Ru, J., Chen, H., Li, X.R., Chen, G.: A range rate based detection technique for tracking a maneuvering target. In: Proceedings of SPIE Conference on Signal and Data Processing of Small Targets (2005)Google Scholar
  30. 30.
    Sage, A., Melsa, J.: Estimation Theory with Applications to Communications and Control. McGraw-Hill, USA (1971)MATHGoogle Scholar
  31. 31.
    Sorokin, A., Boyko, N., Boginski, V., Uryasev, S., Pardalos, P.M.: Mathematical programming tehcniques for sensor networks. Algorithms 2, 565–581 (2009)CrossRefGoogle Scholar
  32. 32.
    Van Trees, H.L.: Detection, Estimation, and Modulation Theory, Part I. Wiley, New York (1968)MATHGoogle Scholar
  33. 33.
    Whittle, P.: Restless bandits: Activity allocation in a changing world. J. Appl. Probab. 25, 287–298 (1988)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Huimin Chen
    • 1
  • Dan Shen
    • 2
  • Genshe Chen
    • 2
  • Khanh Pham
    • 3
  1. 1.Department of Electrical EngineeringUniversity of New OrleansNew OrleansUSA
  2. 2.I-Fusion Technology, Inc.GermantownUSA
  3. 3.AFRL/RVSVBernalilloUSA

Personalised recommendations