Skip to main content

The Bioenergetic Network of Adenosine in Hibernation, Sleep, and Thermoregulation

  • Chapter
  • First Online:
Book cover Adenosine

Abstract

Adenosine is a homeostatic bioenergetic network regulator that plays a fundamental role in energy homeostasis through biochemical, bioenergetic, and receptor dependent processes. Hibernation, torpor, and sleep are integral to energy homeostasis. Here we review evidence that adenosine receptor dependent signaling as well as biochemical and bioenergetic influences of adenosine are essential to all three of these processes placing adenosine at the core of mammalian energy homeostasis. Central A1 adenosine receptor (A1R) dependent signaling is necessary for onset of hibernation and fasting-induced torpor in ground squirrels, hamsters, and mice. Activation of A1R within the central nervous system is sufficient to induce hibernation. A seasonally mediated change in sensitivity to central A1R stimulation is necessary for A1R agonist-induced hibernation in ground squirrels and may underlie the distinction between sleep and hibernation. One function of sleep is to restore brain energy homeostasis, while the primary function of hibernation and torpor is to restore or protect somatic energy homeostasis. Where in the brain A1R agonists act to induce torpor and how central A1R dependent signaling reduces metabolic rate to 1–2 % of resting metabolic rate in hibernating animals is a topic for further research. Understanding mechanisms of energy homeostasis may have implications for treatment of stroke, cardiac arrest, and other conditions where delivery of blood fails to meet demand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews MT (2004) Genes controlling the metabolic switch in hibernating mammals. Biochem Soc Trans 32:1021–1024

    Article  CAS  PubMed  Google Scholar 

  • Andrews MT, Russeth KP, Drewes LR, Henry PG (2009) Adaptive mechanisms regulate preferred utilization of ketones in the heart and brain of a hibernating mammal during arousal from torpor. Am J Physiol Regul Integr Comp Physiol 296:R383–R393

    Article  CAS  PubMed  Google Scholar 

  • Arrigoni E, Chamberlin NL, Saper CB, McCarley RW (2006) Adenosine inhibits basal forebrain cholinergic and noncholinergic neurons in vitro. Neuroscience 140:403–413

    Article  CAS  PubMed  Google Scholar 

  • Asakura H (2004) Fetal and neonatal thermoregulation. J Nippon Med Sch 71:360–370

    Article  CAS  PubMed  Google Scholar 

  • Atkins PW, De Paula J (2006) Atkins’ physical chemistry, 8th edn. W.H. Freeman, New York

    Google Scholar 

  • Barnes BM (1989) Freeze avoidance in a mammal: body temperatures below 0 degree C in an Arctic hibernator. Science 244:1593–1595

    Article  CAS  PubMed  Google Scholar 

  • Barros RC, Branco LG (2000) Role of central adenosine in the respiratory and thermoregulatory responses to hypoxia. Neuroreport 11:193–197

    Article  CAS  PubMed  Google Scholar 

  • Barros RC, Branco LG, Carnio EC (2006) Respiratory and body temperature modulation by adenosine A1 receptors in the anteroventral preoptic region during normoxia and hypoxia. Respir Physiol Neurobiol 153:115–125

    Article  CAS  PubMed  Google Scholar 

  • Bauwens JD, Schmuck EG, Lindholm CR, Ertel RL, Mulligan JD, Hovis I, Viollet B, Saupe KW (2011) Cold tolerance, cold-induced hyperphagia and non-shivering thermogenesis are normal in {alpha}1 AMPK-/- mice. Am J Physiol Regul Integr Comp Physiol 301(2):R473–R483

    Article  CAS  PubMed  Google Scholar 

  • Beccuti G, Pannain S (2011) Sleep and obesity. Curr Opin Clin Nutr Metab Care 14:402–412

    Article  PubMed  Google Scholar 

  • Benington JH, Heller HC (1995) Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol 45:347–360

    Article  CAS  PubMed  Google Scholar 

  • Benington JH, Kodali SK, Heller HC (1995) Stimulation of A1 adenosine receptors mimics the electroencephalographic effects of sleep deprivation. Brain Res 692:79–85

    Article  CAS  PubMed  Google Scholar 

  • Berger RJ, Phillips NH (1995) Energy conservation and sleep. Behav Brain Res 69:65–73

    Article  CAS  PubMed  Google Scholar 

  • Blackstone E, Morrison M, Roth MB (2005) H2S induces a suspended animation-like state in mice. Science 308:518

    Article  CAS  PubMed  Google Scholar 

  • Boison D, Masino SA, Geiger JD (2011) Homeostatic bioenergetic network regulation: a novel concept to avoid pharmacoresistance in epilepsy. Expert Opin Drug Discov 6:1–12

    Article  CAS  Google Scholar 

  • Bouma HR, Carey HV, Kroese FG (2010) Hibernation: the immune system at rest? J Leukoc Biol 88:619–624

    Article  CAS  PubMed  Google Scholar 

  • Bouma HR, Kroese FG, Kok JW, Talaei F, Boerema AS, Herwig A, Draghiciu O, van Buiten A, Epema AH, van Dam A et al (2011) Low body temperature governs the decline of circulating lymphocytes during hibernation through sphingosine-1-phosphate. Proc Natl Acad Sci USA 108:2052–2057

    Article  PubMed  CAS  Google Scholar 

  • Bratincsak A, McMullen D, Miyake S, Toth ZE, Hallenbeck JM, Palkovits M (2007) Spatial and temporal activation of brain regions in hibernation: c-fos expression during the hibernation bout in thirteen-lined ground squirrel. J Comp Neurol 505:443–458

    Article  PubMed  Google Scholar 

  • Braulke LJ, Heldmaier G (2010) Torpor and ultradian rhythms require an intact signalling of the sympathetic nervous system. Cryobiology 60:198–203

    Article  CAS  PubMed  Google Scholar 

  • Buck CL, Barnes BM (2000) Effects of ambient temperature on metabolic rate, respiratory quotient, and torpor in an arctic hibernator. Am J Physiol Regul Integr Comp Physiol 279:R255–R262

    CAS  PubMed  Google Scholar 

  • Bushey D, Tononi G, Cirelli C (2011) Sleep and synaptic homeostasis: structural evidence in Drosophila. Science 332:1576–1581

    Article  CAS  PubMed  Google Scholar 

  • Cano G, Passerin AM, Schiltz JC, Card JP, Morrison SF, Sved AF (2003) Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure. J Comp Neurol 460:303–326

    Article  PubMed  Google Scholar 

  • Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181

    CAS  PubMed  Google Scholar 

  • Chikahisa S, Fujiki N, Kitaoka K, Shimizu N, Sei H (2009) Central AMPK contributes to sleep homeostasis in mice. Neuropharmacology 57:369–374

    Article  CAS  PubMed  Google Scholar 

  • Contestabile A (2009) Benefits of caloric restriction on brain aging and related pathological States: understanding mechanisms to devise novel therapies. Curr Med Chem 16:350–361

    Article  CAS  PubMed  Google Scholar 

  • Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2004) Physiology: hibernation in a tropical primate. Nature 429:825–826

    Article  CAS  PubMed  Google Scholar 

  • Drew KL, Buck CL, Barnes BM, Christian SL, Rasley BT, Harris MB (2007) Central nervous system regulation of mammalian hibernation: implications for metabolic suppression and ischemia tolerance. J Neurochem 102:1713–1726

    Article  CAS  PubMed  Google Scholar 

  • Drew KL, Rice ME, Kuhn TB, Smith MA (2001) Neuroprotective adaptations in hibernation: therapeutic implications for ischemia-reperfusion, traumatic brain injury and neurodegenerative diseases. Free Radic Biol Med 31:563–573

    Article  CAS  PubMed  Google Scholar 

  • Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55

    Article  CAS  PubMed  Google Scholar 

  • Dworak M, McCarley RW, Kim T, Kalinchuk AV, Basheer R (2010) Sleep and brain energy levels: ATP changes during sleep. J Neurosci 30:9007–9016

    Article  CAS  PubMed  Google Scholar 

  • Epperson LE, Karimpour-Fard A, Hunter LE, Martin SL (2011) Metabolic cycles in a circannual hibernator. Physiol Genomics 43(13):799–807

    Article  CAS  PubMed  Google Scholar 

  • Florant GL, Fenn AM, Healy JE, Wilkerson GK, Handa RJ (2010) To eat or not to eat: the effect of AICAR on food intake regulation in yellow-bellied marmots (Marmota flaviventris). J Exp Biol 213:2031–2037

    Article  PubMed  Google Scholar 

  • Florant GL, Turner BM, Heller HC (1978) Temperature regulation during wakefulness, sleep, and hibernation in marmots. Am J Physiol 235:R82–R88

    CAS  PubMed  Google Scholar 

  • Florian C, Vecsey CG, Halassa MM, Haydon PG, Abel T (2011) Astrocyte-derived adenosine and A1 receptor activity contribute to sleep loss-induced deficits in hippocampal synaptic plasticity and memory in mice. J Neurosci 31:6956–6962

    Article  CAS  PubMed  Google Scholar 

  • Fredholm BB, Johansson S, Wang YQ (2011) Adenosine and the regulation of metabolism and body temperature. Adv Pharmacol 61:77–94

    Article  CAS  PubMed  Google Scholar 

  • French AR (1985) Allometries of the durations of torpid and euthermic intervals during mammalian hibernation: a test of the theory of metabolic control of the timing of changes in body temperature. J Comp Physiol B 156:13–19

    Article  CAS  PubMed  Google Scholar 

  • Frerichs KU, Smith CB, Brenner M, DeGracia DJ, Krause GS, Marrone L, Dever TE, Hallenbeck JM (1998) Suppression of protein synthesis in brain during hibernation involves inhibition of protein initiation and elongation. Proc Natl Acad Sci USA 95:14511–14516

    Article  CAS  PubMed  Google Scholar 

  • Fukuda M, Williams KW, Gautron L, Elmquist JK (2011) Induction of leptin resistance by activation of cAMP-Epac signaling. Cell Metab 13:331–339

    Article  CAS  PubMed  Google Scholar 

  • Gallopin T, Luppi PH, Cauli B, Urade Y, Rossier J, Hayaishi O, Lambolez B, Fort P (2005) The endogenous somnogen adenosine excites a subset of sleep-promoting neurons via A2A receptors in the ventrolateral preoptic nucleus. Neuroscience 134:1377–1390

    Article  CAS  PubMed  Google Scholar 

  • Galster W, Morrison PR (1975) Gluconeogenesis in arctic ground squirrels between periods of hibernation. Am J Physiol 228:325–330

    CAS  PubMed  Google Scholar 

  • Galster WA, Morrison P (1970) Cyclic changes in carbohydrate concentrations during hibernation in the arctic ground squirrel. Am J Physiol 218:1228–1232

    CAS  PubMed  Google Scholar 

  • Garcia MM, Gueant-Rodriguez RM, Pooya S, Brachet P, Alberto JM, Jeannesson E, Maskali F, Gueguen N, Marie PY, Lacolley P et al (2011) Methyl donor deficiency induces cardiomyopathy through altered methylation/acetylation of PGC-1alpha by PRMT1 and SIRT1. J Pathol 225(3):324–335

    Article  CAS  PubMed  Google Scholar 

  • Geiser F (1988) Reduction of metabolism during hibernation and daily torpor in mammals and birds: temperature effect or physiological inhibition? J Comp Physiol B 158:25–37

    Article  CAS  PubMed  Google Scholar 

  • Geiser F (2004) Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu Rev Physiol 66:239–274

    Article  CAS  PubMed  Google Scholar 

  • Geiser F, Song X, Körtner G (1996) The effect of He-O2 exposure on metabolic rate, thermoregulation and thermal conductance during normothermia and daily torpor. J Comp Physiol B 166:190–196

    Article  CAS  Google Scholar 

  • Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251

    Article  CAS  PubMed  Google Scholar 

  • Glotzbach SF, Heller HC (1976) Central nervous regulation of body temperature during sleep. Science 194:537–539

    Article  CAS  PubMed  Google Scholar 

  • Glotzbach SF, Heller HC (1984) Changes in the thermal characteristics of hypothalamic neurons during sleep and wakefulness. Brain Res 309:17–26

    Article  CAS  PubMed  Google Scholar 

  • Hampton M, Nelson BT, Andrews MT (2010) Circulation and metabolic rates in a natural hibernator: an integrative physiological model. Am J Physiol Regul Integr Comp Physiol 299:R1478–R1488

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG (2008) AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes (Lond) 32 Suppl 4: S7–S12

    Google Scholar 

  • Heldmaier G, Ortmann S, Elvert R (2004) Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol 141:317–329

    Article  PubMed  Google Scholar 

  • Heller H (2005) Temperature, thermoregulation and sleep. In: Kryger M, Roth T, Dement W (eds) Principles and practice of sleep medicine. Elsevier Saunders, Philadelphia, pp 292–304

    Chapter  Google Scholar 

  • Heller HC, Colliver GW, Beard J (1977) Thermoregulation during entrance into hibernation. Pflugers Arch 369:55–59

    Article  CAS  PubMed  Google Scholar 

  • Hochachka PW (1986) Defense strategies against hypoxia and hypothermia. Science 231:234–241

    Article  CAS  PubMed  Google Scholar 

  • Hoffman RA, Robinson PF, Magalhaes H (eds) (1968) The golden hamster; its biology and use in medical research. The Iowa State University Press, Ames Iowa, USA

    Google Scholar 

  • Huang ZL, Qu WM, Eguchi N, Chen JF, Schwarzschild MA, Fredholm BB, Urade Y, Hayaishi O (2005) Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci 8:858–859

    CAS  PubMed  Google Scholar 

  • Huang ZL, Urade Y, Hayaishi O (2007) Prostaglandins and adenosine in the regulation of sleep and wakefulness. Curr Opin Pharmacol 7:33–38

    Article  CAS  PubMed  Google Scholar 

  • Jinka TJ, Toien O, Drew KL (2011) Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine A1 receptors. J Neurosci 31(30):10752–10758

    Article  CAS  PubMed  Google Scholar 

  • Jinka TR, Carlson ZA, Moore JT, Drew KL (2010) Altered thermoregulation via sensitization of A1 adenosine receptors in dietary restricted rats. Psychopharmacology (Berl) 209(3):217–224

    Article  CAS  Google Scholar 

  • Karpovich SA, Toien O, Buck CL, Barnes BM (2009) Energetics of arousal episodes in hibernating arctic ground squirrels. J Comp Physiol B 179:691–700

    Article  PubMed  Google Scholar 

  • Katayose Y, Tasaki M, Ogata H, Nakata Y, Tokuyama K, Satoh M (2009) Metabolic rate and fuel utilization during sleep assessed by whole-body indirect calorimetry. Metabolism 58:920–926

    Article  CAS  PubMed  Google Scholar 

  • Kilduff TS, Krilowicz B, Milsom WK, Trachsel L, Wang LC (1993) Sleep and mammalian hibernation: homologous adaptations and homologous processes? Sleep 16:372–386

    CAS  PubMed  Google Scholar 

  • Kruman II (1992) Comparative analysis of cell replacement in hibernators. Comp Biochem Physiol A 101:11–18

    Article  CAS  PubMed  Google Scholar 

  • Latini S, Pedata F (2001) Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem 79:463–484

    Article  CAS  PubMed  Google Scholar 

  • Lee TF, Nurnberger F, Wang LCH (eds) (1993) Possible involvement of endogenous adenosine in hibernation. Westview, Boulder

    Google Scholar 

  • Lee TM, Zucker I (1991) Suprachiasmatic nucleus and photic entrainment of circannual rhythms in ground squirrels. J Biol Rhythms 6:315–330

    Article  CAS  PubMed  Google Scholar 

  • Levesque DL, Tattersall GJ (2009) Seasonal changes in thermoregulatory responses to hypoxia in the Eastern chipmunk (Tamias striatus). J Exp Biol 212:1801–1810

    Article  PubMed  Google Scholar 

  • Lim CT, Kola B, Korbonits M (2010) AMPK as a mediator of hormonal signalling. J Mol Endocrinol 44:87–97

    Article  CAS  PubMed  Google Scholar 

  • Liu ZW, Gao XB (2007) Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus: a possible sleep-promoting effect. J Neurophysiol 97:837–848

    Article  CAS  PubMed  Google Scholar 

  • Lust WD, Wheaton AB, Feussner G, Passonneau J (1989) Metabolism in the hamster brain during hibernation and arousal. Brain Res 489:12–20

    Article  CAS  PubMed  Google Scholar 

  • Lyman C, O’Brien R (1960) Circulatory changes in the thirteen-lined ground squirrel during the hibernation cycle. In Mammalian Hibernation Bull Mus Comp Zool, 353–372

    Google Scholar 

  • Ma YL, Zhu X, Rivera PM, Toien O, Barnes BM, LaManna JC, Smith MA, Drew KL (2005) Absence of cellular stress in brain after hypoxia induced by arousal from hibernation in Arctic ground squirrels. Am J Physiol Regul Integr Comp Physiol 289:R1297–R1306

    Article  CAS  PubMed  Google Scholar 

  • Magarinos AM, McEwen BS, Saboureau M, Pevet P (2006) Rapid and reversible changes in intrahippocampal connectivity during the course of hibernation in European hamsters. Proc Natl Acad Sci USA 103:18775–18780

    Article  CAS  PubMed  Google Scholar 

  • Muleme HM, Walpole AC, Staples JF (2006) Mitochondrial metabolism in hibernation: metabolic suppression, temperature effects, and substrate preferences. Physiol Biochem Zool 79:474–483

    Article  CAS  PubMed  Google Scholar 

  • Mulligan JD, Gonzalez AA, Stewart AM, Carey HV, Saupe KW (2007) Upregulation of AMPK during cold exposure occurs via distinct mechanisms in brown and white adipose tissue of the mouse. J Physiol 580:677–684

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K (2011) Central circuitries for body temperature regulation and fever. Am J Physiol Regul Integr Comp Physiol 301:R1207–R1228

    Article  CAS  PubMed  Google Scholar 

  • Oishi Y, Huang ZL, Fredholm BB, Urade Y, Hayaishi O (2008) Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A1 receptors and promotes non-rapid eye movement sleep. Proc Natl Acad Sci USA 105:19992–19997

    Article  CAS  PubMed  Google Scholar 

  • Osborne PG, Sato J, Shuke N, Hashimoto M (2005) Sympathetic alpha-adrenergic regulation of blood flow and volume in hamsters arousing from hibernation. Am J Physiol Regul Integr Comp Physiol 289:R554–R562

    Article  CAS  PubMed  Google Scholar 

  • Pastukhov YF (1997) REM sleep as a criterion of temperature comfort and temperature homeostasis “well-being” in euthermic and hibernating mammals. Ann N Y Acad Sci 813:71–72

    Article  CAS  PubMed  Google Scholar 

  • Pek M, Lutz PL (1997) Role for adenosine in channel arrest in the anoxic turtle brain. J Exp Biol 200:1913–1917

    CAS  PubMed  Google Scholar 

  • Pengelley ET, Asmundson SJ, Barnes B, Aloia RC (1976) Relationship of light intensity and photoperiod to circannual rhythmicity in the hibernating ground squirrel, Citellus lateralis. Comp Biochem Physiol A 53:273–277

    Article  CAS  PubMed  Google Scholar 

  • Popov VI, Bocharova LS (1992) Hibernation-induced structural changes in synaptic contacts between mossy fibres and hippocampal pyramidal neurons. Neuroscience 48:53–62

    Article  CAS  PubMed  Google Scholar 

  • Popov VI, Kraev IV, Ignat’ev DA, Stewart MG (2011) Suspension of mitotic activity in dentate gyrus of the hibernating ground squirrel. Neural Plast 2011:867525

    Article  PubMed  Google Scholar 

  • Porkka-Heiskanen T, Kalinchuk AV (2011) Adenosine, energy metabolism and sleep homeostasis. Sleep Med Rev 15:123–135

    Article  PubMed  Google Scholar 

  • Porkka-Heiskanen T, Strecker RE, McCarley RW (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99:507–517

    Article  CAS  PubMed  Google Scholar 

  • Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276:1265–1268

    Article  CAS  PubMed  Google Scholar 

  • Pulawa LK, Florant GL (2000) The effects of caloric restriction on the body composition and hibernation of the golden-mantled ground squirrel (Spermophilus lateralis). Physiol Biochem Zool 73:538–546

    Article  CAS  PubMed  Google Scholar 

  • Rivkees SA, Price SL, Zhou FC (1995) Immunohistochemical detection of A1 adenosine receptors in rat brain with emphasis on localization in the hippocampal formation, cerebral cortex, cerebellum, and basal ganglia. Brain Res 677:193–203

    Article  CAS  PubMed  Google Scholar 

  • Russell RL, O’Neill PH, Epperson LE, Martin SL (2010) Extensive use of torpor in 13-lined ground squirrels in the fall prior to cold exposure. J Comp Physiol B 180:1165–1172

    Article  PubMed  Google Scholar 

  • Satoh S, Matsumura H, Kanbayashi T, Yoshida Y, Urakami T, Nakajima T, Kimura N, Nishino S, Yoneda H (2006) Expression pattern of FOS in orexin neurons during sleep induced by an adenosine A2A receptor agonist. Behav Brain Res 170:277–286

    Article  CAS  PubMed  Google Scholar 

  • Scharf MT, Naidoo N, Zimmerman JE, Pack AI (2008) The energy hypothesis of sleep revisited. Prog Neurobiol 86:264–280

    Article  PubMed  Google Scholar 

  • Schmidt-Nielsen K (1997) Animal physiology: adaptation and environment, 5th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Serkova NJ, Rose JC, Epperson LE, Carey HV, Martin SL (2007) Quantitative analysis of liver metabolites in three stages of the circannual hibernation cycle in 13-lined ground squirrels by NMR. Physiol Genomics 31:15–24

    Article  CAS  PubMed  Google Scholar 

  • Sheriff MJ, Kenagy GJ, Richter M, Lee T, Toien O, Kohl F, Buck CL, Barnes BM (2010) Phenological variation in annual timing of hibernation and breeding in nearby populations of Arctic ground squirrels. Proc Biol Sci 278(1716):2369–2375

    Article  PubMed  Google Scholar 

  • Sherin JE, Shiromani PJ, McCarley RW, Saper CB (1996) Activation of ventrolateral preoptic neurons during sleep. Science 271:216–219

    Article  CAS  PubMed  Google Scholar 

  • Shiomi H, Tamura Y (2000) Pharmacological aspects of mammalian hibernation: central thermoregulation factors in hibernation cycle. Nippon Yakurigaku Zasshi (Folia Pharmacol Jpn) 116:304–312

    Article  CAS  Google Scholar 

  • Snyder GK, Nestler JR (1990) Relationships between body temperature, thermal conductance, Q10 and energy metabolism during daily torpor and hibernation in rodents. J Comp Physiol B 159:667–675

    Article  CAS  PubMed  Google Scholar 

  • St-Onge MP, Roberts AL, Chen J, Kelleman M, O’Keeffe M, Roychoudhury A, Jones PJ (2011) Short sleep duration increases energy intakes but does not change energy expenditure in normal-weight individuals. Am J Clin Nutr 94:410–416

    Article  CAS  PubMed  Google Scholar 

  • Staples JF, Brown JC (2008) Mitochondrial metabolism in hibernation and daily torpor: a review. J Comp Physiol B 178:811–827

    Article  CAS  PubMed  Google Scholar 

  • Steiner AA, Branco LG (2002) Hypoxia-induced anapyrexia: implications and putative mediators. Annu Rev Physiol 64:263–288

    Article  CAS  PubMed  Google Scholar 

  • Strecker RE, Morairty S, Thakkar MM, Porkka-Heiskanen T, Basheer R, Dauphin LJ, Rainnie DG, Portas CM, Greene RW, McCarley RW (2000) Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behav Brain Res 115:183–204

    Article  CAS  PubMed  Google Scholar 

  • Strijkstra AM, Daan S (1997) Sleep during arousal episodes as a function of prior torpor duration in hibernating European ground squirrels. J Sleep Res 6:36–43

    Article  CAS  PubMed  Google Scholar 

  • Swoap S, Lliff B (2011) AMP vs. adenosine as a mediator of fasting-induced torpor. Paper presented at metabolic responses to extreme conditions, keystone symposia on molecular and cellular biology, Big Sky, Montana

    Google Scholar 

  • Swoap SJ, Gutilla MJ, Liles LC, Smith RO, Weinshenker D (2006) The full expression of fasting-induced torpor requires beta 3-adrenergic receptor signaling. J Neurosci 26:241–245

    Article  CAS  PubMed  Google Scholar 

  • Swoap SJ, Rathvon M, Gutilla M (2007) AMP does not induce torpor. Am J Physiol Regul Integr Comp Physiol 293:R468–R473

    Article  CAS  PubMed  Google Scholar 

  • Swoap SJ, Weinshenker D (2008) Norepinephrine controls both torpor initiation and emergence via distinct mechanisms in the mouse. PLoS One 3:e4038

    Article  PubMed  CAS  Google Scholar 

  • Tamura Y, Shintani M, Nakamura A, Monden M, Shiomi H (2005) Phase-specific central regulatory systems of hibernation in Syrian hamsters. Brain Res 1045:88–96

    Article  CAS  PubMed  Google Scholar 

  • Tattersall GJ, Milsom WK (2003) Transient peripheral warming accompanies the hypoxic metabolic response in the golden-mantled ground squirrel. J Exp Biol 206:33–42

    Article  PubMed  Google Scholar 

  • Ticho SR, Radulovacki M (1991) Role of adenosine in sleep and temperature regulation in the preoptic area of rats. Pharmacol Biochem Behav 40:33–40

    Article  CAS  PubMed  Google Scholar 

  • Toien O, Blake J, Edgar DM, Grahn DA, Heller HC, Barnes BM (2011) Hibernation in black bears: independence of metabolic suppression from body temperature. Science 331:906–909

    Article  CAS  PubMed  Google Scholar 

  • Toien O, Drew KL, Chao ML, Rice ME (2001) Ascorbate dynamics and oxygen consumption during arousal from hibernation in Arctic ground squirrels. Am J Physiol Regul Integr Comp Physiol 281:R572–R583

    CAS  PubMed  Google Scholar 

  • Twente JW, Twente JA (1968) Progressive irritability of hibernating Citellus lateralis. Comp Biochem Physiol 25:467–474

    Article  CAS  PubMed  Google Scholar 

  • Ungvari Z, Parrado-Fernandez C, Csiszar A, de Cabo R (2008) Mechanisms underlying caloric restriction and lifespan regulation: implications for vascular aging. Circ Res 102:519–528

    Article  CAS  PubMed  Google Scholar 

  • von der Ohe CG, Garner CC, Darian-Smith C, Heller HC (2007) Synaptic protein dynamics in hibernation. J Neurosci 27:84–92

    Article  PubMed  CAS  Google Scholar 

  • Walker JM, Glotzbach SF, Berger RJ, Heller HC (1977) Sleep and hibernation in ground squirrels (Citellus spp): electrophysiological observations. Am J Physiol 233:R213–R221

    CAS  PubMed  Google Scholar 

  • Walker JM, Haskell EH, Berger RJ, Heller CH (1980) Hibernation and circannual rhythms of sleep. Physiol Zool 53:8–11

    Google Scholar 

  • Walther T, Novo M, Rossger K, Letisse F, Loret MO, Portais JC, Francois JM (2010) Control of ATP homeostasis during the respiro-fermentative transition in yeast. Mol Syst Biol 6:344

    Article  PubMed  CAS  Google Scholar 

  • Wilson CN (2009) Adenosine receptors in health and disease. Springer, New York

    Book  Google Scholar 

  • Zhang J, Kaasik K, Blackburn MR, Lee CC (2006) Constant darkness is a circadian metabolic signal in mammals. Nature 439:340–343

    Article  CAS  PubMed  Google Scholar 

  • Zhu PJ, Krnjevic K (1997) Adenosine release mediates cyanide-induced suppression of CA1 neuronal activity. J Neurosci 17:2355–2364

    CAS  PubMed  Google Scholar 

  • Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A et al (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386

    Article  CAS  PubMed  Google Scholar 

  • zur Nedden S, Hawley S, Pentland N, Hardie DG, Doney AS, Frenguelli BG (2011) Intracellular ATP influences synaptic plasticity in area CA1 of rat hippocampus via metabolism to adenosine and activity-dependent activation of adenosine A1 receptors. J Neurosci 31:6221–6234

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by US Army Research Office Grant W911NF-05-1-0280, US Army Medical Research and Materiel Command Grant 05178001, and National Institute of Neurological Disorders and Stroke Grants NS041069-06 and R15NS070779.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly L. Drew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Drew, K.L., Jinka, T.R. (2013). The Bioenergetic Network of Adenosine in Hibernation, Sleep, and Thermoregulation. In: Masino, S., Boison, D. (eds) Adenosine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3903-5_13

Download citation

Publish with us

Policies and ethics