Extracting End-to-End Timing Models from Component-Based Distributed Embedded Systems

Part of the Embedded Systems book series (EMSY, volume 20)


In order to facilitate the end-to-end timing analysis, we present a method to extract end-to-end timing models from component-based distributed embedded systems that are developed using the existing industrial component model, Rubus Component Model (RCM). RCM is used for the development of software for vehicular embedded systems by several international companies. We discuss and solve the issues involved during the model extraction such as extraction of timing information from all nodes and networks in the system and linking of trigger and data chains in distributed transactions. We also discuss the implementation of the method for the extraction of end-to-end timing models in the Rubus Analysis Framework.



This work is supported by the Swedish Knowledge Foundation (KKS) within the project FEMMVA. The authors thank the industrial partners Arcticus Systems, BAE Systems Hägglunds and Volvo Construction Equipment (VCE), Sweden.


  1. 1.
    Crnkovic, I., Larsson, M.: Building Reliable Component-Based Software Systems. Artech House, Inc., USA (2002)Google Scholar
  2. 2.
    Henzinger, T.A., Sifakis, J.: The embedded systems design challenge. In: Proceedings of the 14th international symposium on formal methods (FM), Lecture Notes in Computer Science, pp. 1–15. Springer, Heidelberg (2006)Google Scholar
  3. 3.
    TIMMO Consortium: TIMMO-2-USE.
  4. 4.
    TIMMO Consortium: TADL: Timing Augmented Description Language, Version 2. TIMMO (TIMing MOdel), Deliverable 6 (2009)Google Scholar
  5. 5.
    TIMMO Consortium: TIMMO Methodology, Version 2. TIMMO (TIMing MOdel), Deliverable 7. The TIMMO Consortium (2009)Google Scholar
  6. 6.
    Hänninen K., et al.: The rubus component model for resource constrained real-time systems. In: 3rd IEEE International Symposium on Industrial Embedded Systems (2008)Google Scholar
  7. 7.
    Arcticus Systems AB: Arcticus Systems home page.
  8. 8.
    BAE Systems: BAE Systems Hägglunds.
  9. 9.
    Volvo AB: Volvo Construction Equipment.
  10. 10.
    Mecel AB: Home page.
  11. 11.
    Knorr-Bremse AG: Home page.
  12. 12.
    Hänninen, K.: Efficient memory utilization in resource constrained real-time systems. Ph.D. thesis, Mälardalen University, Sweden (2008)Google Scholar
  13. 13.
    Mubeen, S., Mäki-Turja, J., Sjödin, M.: Support for end-to-end response-time and delay analysis in the industrial tool suite: Issues, experiences and a case study. Comput. Sci. Inf. Sys. 10(1), 453–482, ISSN: 1361–1384, (2013)Google Scholar
  14. 14.
    Tindell, K.: Adding time-offsets to schedulability analysis. Department of Computer Science, University of York, England, Tech. rep (1994)Google Scholar
  15. 15.
    Palencia, J., Harbour, M.G.: Schedulability analysis for tasks with static and dynamic offsets. Real-Time Systems Symposium, IEEE International p. 26 (1998). URL
  16. 16.
    Mäki-Turja, J., Nolin, M.: Efficient implementation of tight response-times for tasks with offsets. Real-Time Syst. 40(1), 77–116 (2008). URL
  17. 17.
    Mubeen, S., Mäki-Turja, J., Sjödin, M.: Extending schedulability analysis of controller area network (CAN) for mixed (periodic/sporadic) messages. In: 16th IEEE Conference on Emerging Technologies and Factory Automation (ETFA) (2011). doi: 10.1109/ETFA.2011.6059010.
  18. 18.
    Mubeen, S., Mäki-Turja, J., Sjödin, M.: Extending response-time analysis of controller area network (CAN) with FIFO queues for mixed messages. In: 16th IEEE Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–4 (2011). doi: 10.1109/ETFA.2011.6059188.
  19. 19.
    Mubeen, S., Mäki-Turja, J., Sjödin, M.: Response-time analysis of mixed messages in controller area network with priority- and FIFO-queued nodes. In: 9th IEEE International Workshop on Factory Communication Systems (WFCS) (2012)Google Scholar
  20. 20.
    Mubeen, S., Mäki-Turja, J., Sjödin, M.: Worst-case response-time analysis for mixed messages with offsets in controller area network. In: 17th IEEE Conference on Emerging Technologies and Factory Automation (ETFA) (2012)Google Scholar
  21. 21.
    Mubeen, S., Mäki-Turja, J., Sjödin, M., Carlson, J.: Analyzable modeling of legacy communication in component-based distributed embedded systems. In: 37th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), pp. 229–238 (2011). doi: 10.1109/SEAA.2011.43
  22. 22.
    AUTOSAR Consortium: AUTOSAR Technical Overview, Version 2.2.2. AUTOSAR - AUTomotive Open System ARchitecture, Release 3.1, The AUTOSAR Consortium, Aug (2008).
  23. 23.
    Heinecke, H., et al.: AUTOSAR - Current results and preparations for exploitation. In: Proceedings of the 7th Euroforum Conference, EUROFORUM ’06 (2006)Google Scholar
  24. 24.
    TIMMO Consortium: Mastering Timing Information for Advanced Automotive Systems Engineering - In the TIMMO-2-USE Brochure (2012).
  25. 25.
    Sentilles, S., Vulgarakis, A., Bures, T., Carlson, J., Crnkovic, I.: A Component Model for Control-Intensive Distributed Embedded Systems. In: 11th International Symposium on Component Based Software Engineering (CBSE2008), pp. 310–317. Springer, Heidelberg (2008)Google Scholar
  26. 26.
    Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in BIP. In: Proc. of SEFM’06, pp. 3–12. IEEE Computer Society (2006)Google Scholar
  27. 27.
    Bozga, M., et. al.: The IF Toolset. In: Formal Methods for the Design of Real-Time Systems, Lecture Notes in Computer Science, vol 3185, pp. 237–267. Springer, Hedielberg (2004)Google Scholar
  28. 28.
    Gssler, G.: Prometheus - A Compositional Modeling Tool for Real-Time Systems. In , Workshop on Real-Time Tools (RT-TOOLS) (2001). (2001)Google Scholar
  29. 29.
  30. 30.
    Muskens, J., Chaudron, M.R.V., Lukkien, J.J.: A component framework for consumer electronics middleware. In: Component-Based Software Development for Embedded Systems. pp 164–184, (2005)Google Scholar
  31. 31.
    Scheickl, O., Rudorfer, M.: Automotive real time development using a timing-augmented AUTOSAR specification. ERTS, (2008)Google Scholar
  32. 32.
    Feiertag, N., Richter, K., Nordlander, J., Jonsson, J.: A compositional framework for end-to-end path delay calculation of automotive systems under different path semantics. In: Workshop on Compositional Theory and Technology for Real-Time Embedded Systems (CRTS) (2008)Google Scholar
  33. 33.
    Mubeen, S., Mäki-Turja, J., Sjödin, M.: Exploring Options for Modeling of Real-Time Network Communication in an Industrial Component Model for Distributed Embedded Systems. In: The 6th International Conference on Embedded and Multimedia Computing (EMC-2011), Lecture Notes in Electrical Engineering, vol. 102, pp. 441–458. Springer Berlin / Heidelberg (2011)Google Scholar
  34. 34.
    Mubeen, S., Mäki-Turja, J., Sjödin, M.: Tracing event chains for holistic response-time analysis of component-based distributed real-time systems. In: 23rd Euromicro Conference on Real-Time Systems (ECRTS 2011), WIP Session. ACM SIGBED, Review (2011)Google Scholar
  35. 35.
    Ke, X., Sierszecki, K., Angelov, C.: COMDES-II: A Component-Based Framework for Generative Development of Distributed Real-Time Control Systems. In: 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2007, pp. 199–208 (2007). doi: 10.1109/RTCSA.2007.29

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Saad Mubeen
    • 1
  • Jukka Mäki-Turja
    • 2
  • Mikael Sjödin
    • 1
  1. 1.Mälardalen UniversityVästeråsSweden
  2. 2.Arcticus SystemsVästeråsSweden

Personalised recommendations