Advertisement

Sensors pp 245-249 | Cite as

Investigation of Seebeck Effect in ZnO Nanowires for Micropower Generation in Autonomous Sensor Systems

  • Simone Dalola
  • Guido Faglia
  • Elisabetta Comini
  • Matteo Ferroni
  • Caterina Soldano
  • Dario Zappa
  • Vittorio Ferrari
  • Giorgio Sberveglieri
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 162)

Abstract

The Seebeck effect of ZnO nanowires has been investigated with the future aim to build thermoelectric devices based on nanowire arrays for energy harvesting and potential use in low-power portable electronics and autonomous sensor systems. Bundles of ZnO nanowires have been deposited on alumina substrates by a thermal evaporation process. The ZnO nanowires have been characterized by means of a purposely-developed experimental set-up, showing a negative Seebeck coefficient as for n-type semiconductors.

Keywords

Seebeck Coefficient Thermoelectric Device Seebeck Effect Instrumentation Amplifier Peltier Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Authors gratefully acknowledge partial financial support by the IIT, Project Seed 2009 “Metal oxide NANOwires as efficient high-temperature THERmoelectric Materials (NANOTHER)”.

References

  1. 1.
    Dalola S, Faglia G, Comini E, Ferroni M, Soldano C, Zappa D, Ferrari V, Sberveglieri G (2011) Seebeck effect in ZnO nanowires for micropower generation. Procedia Eng 25:1481–1484CrossRefGoogle Scholar
  2. 2.
    Nolas GS, Sharp J, Goldsmid HJ (2001) Thermoelectrics basic principles and new materials developments. Springer, BerlinMATHGoogle Scholar
  3. 3.
    Pichanusakorn P, Bandaru P (2010) Nanostructured thermoelectrics. Mater Sci Eng 67(2–4):19–63CrossRefGoogle Scholar
  4. 4.
    Aksamija Z, Knezevic I (2010) Thermoelectric properties of silicon nanostructures. J Comput Electron 9(3–4):173–179CrossRefGoogle Scholar
  5. 5.
    Vineis CJ, Shakouri A, Majumdar A, Kanatzidis MG (2010) Nanostructured thermoelectrics: big efficiency gains from small features. Adv Mater 22(36):3970–3980CrossRefGoogle Scholar
  6. 6.
    Lee C-H, Yi G-C, Zuev YM, Kim P (2009) Thermoelectric power measurements of wide band gap semiconducting nanowires. Appl Phys Lett 94:022106CrossRefGoogle Scholar
  7. 7.
    Comini E (2006) Metal oxide nano-crystals for gas sensing. Anal Chim Acta 568(1–2):28–40CrossRefGoogle Scholar
  8. 8.
    Kasap SO (2005) Principles of electronic materials and devices, 2nd edition, Mc Graw Hill, New YorkGoogle Scholar
  9. 9.
    Cheng H, Xu XJ, Hng HH, Ma J (2009) Characterization of Al-doped ZnO thermoelectric materials prepared by RF plasma powder processing and hot press sintering. Ceram Int 35(8):3067–3072CrossRefGoogle Scholar
  10. 10.
    Kinemuchi Y, Mikami M, Kobayashi K, Watari K, Hotta Y (2009) Thermoelectric Properties of Nanograined ZnO. J Electron Mater 39(9):2059–2063Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Simone Dalola
    • 1
    • 2
  • Guido Faglia
    • 2
  • Elisabetta Comini
    • 2
  • Matteo Ferroni
    • 2
  • Caterina Soldano
    • 2
  • Dario Zappa
    • 2
  • Vittorio Ferrari
    • 1
  • Giorgio Sberveglieri
    • 2
  1. 1.Dipartimento di Ingegneria dell’InformazioneUniversità degli Studi di BresciaBresciaItaly
  2. 2.SENSOR LabUniversità degli Studi di Brescia & CNR-IDASCBresciaItaly

Personalised recommendations