Skip to main content

Response Inhibition

  • Chapter
  • First Online:
Neurophenotypes

Part of the book series: Innovations in Cognitive Neuroscience ((Innovations Cogn.Neuroscience))

  • 679 Accesses

Abstract

In our everyday lives, we continuously select actions from plenty of possible options. To perform the chosen action correctly, the remaining unchosen actions must be inhibited. The importance of response inhibition is especially appreciated when one considers the outcomes when it does not work correctly. Malfunction of the inhibition process can lead to an impairment in decision-making (resulting, for example, in the inability to appropriately select steering direction when driving) or deficient motor control (resulting, for example, in an accident). Studies have proposed that the impaired ability of response inhibition may contribute to the symptoms in several psychiatric and developmental disorders, such as ADHD (Barkley in Psychol Bull 121(1):65–94 1997). In this review, we first explain the experimental definition of response inhibition and how it can be assessed by cognitive tasks. Next, we briefly summarize the neural mechanism of response inhibition and our current knowledge about its relationship to psychiatric disorders. Finally, we discuss the validity of response inhibition as a behavioral phenotype, and suggest future directions for clinical and experimental studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alderson RM, Rapport MD, Kofler MJ (2007) Attention-deficit/hyperactivity disorder and behavioral inhibition: a meta-analytic review of the stop-signal paradigm. J Abnorm Child Psychol 35(5):745–758

    Article  PubMed  Google Scholar 

  • Alderson RM, Rapport MD, Sarver DE, Kofler MJ (2008) ADHD and behavioral inhibition: a re-examination of the stop-signal task. J Abnorm Child Psychol 36(7):989–998

    Article  PubMed  Google Scholar 

  • American Psychiatric Association (2000) Diagnostic and statistical manual of mental disorders DSM-IV-TR fourth edition (text revision). Am Psychiatric Pub, Washington DC

    Book  Google Scholar 

  • Aron AR, Fletcher PC, Bullmore ET et al (2003) Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci 6(2):115–116

    Article  PubMed  Google Scholar 

  • Aron AR, Poldrack RA (2006) Cortical and subcortical contributions to stop signal response inhibition: role of the subthalamic nucleus. J Neurosci 26(9):2424–2433

    Article  PubMed  Google Scholar 

  • Band GP, van Boxtel GJ (1999) Inhibitory motor control in stop paradigms: review and reinterpretation of neural mechanisms. Acta Psychol 101(2–3):179–211

    Article  Google Scholar 

  • Band GPH, van der Molen MW, Logan GD (2003) Horse-race model simulations of the stop-signal procedure. Acta Psychol 112(2):105–142

    Article  Google Scholar 

  • Barkley RA (1997) Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 121(1):65–94

    Article  PubMed  Google Scholar 

  • Bechara A, Damasio AR, Damasio H, Anderson SW (1994) Insensitivity to future consequences following damage to human prefrontal cortex. Cognition 50(1–3):7–15

    Article  PubMed  Google Scholar 

  • Bekker EM, Overtoom CC, Kenemans JL et al (2005) Stopping and changing in adults with ADHD. Psychol Med 35(6):807–816

    Article  PubMed  Google Scholar 

  • Berg EA (1948) A simple objective technique for measuring flexibility in thinking. J Gen Psychol 39(1):15–22

    Article  PubMed  Google Scholar 

  • Bidwell LC, Willcutt EG, Defries JC, Pennington BF (2007) Testing for neuropsychological endophenotypes in siblings discordant for attention-deficit/hyperactivity disorder. Biol Psychiatry 62(9):991–998

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruce CJ, Goldberg ME (1985) Primate frontal eye fields. I. Single neurons discharging before saccades. J Neurophysiol 53(3):603–635

    PubMed  Google Scholar 

  • Bunge SA, Dudukovic NM, Thomason ME et al (2002) Immature frontal lobe contributions to cognitive control in children: evidence from fMRI. Neuron 33(2):301–311

    Article  PubMed  PubMed Central  Google Scholar 

  • Chambers CD, Bellgrove MA, Stokes MG et al (2006) Executive “brake failure” following deactivation of human frontal lobe. J Cogn Neurosci 18(3):444–455

    PubMed  Google Scholar 

  • Chevrier AD, Noseworthy MD, Schachar R (2007) Dissociation of response inhibition and performance monitoring in the stop signal task using event-related fMRI. Hum Brain Mapp 28(12):1347–1358

    Article  PubMed  Google Scholar 

  • Chikazoe J (2010) Localizing performance of go/no-go tasks to prefrontal cortical subregions. Curr Opin Psychiatry 23(3):267–272

    Article  PubMed  Google Scholar 

  • Damasio AR (1996) The somatic marker hypothesis and the possible functions of the prefrontal cortex. Philos Trans R Soc Lond B Biol Sci 351(1346):1413–1420

    Article  PubMed  Google Scholar 

  • De Vito EE, Blackwell AD, Clark L et al (2009) Methylphenidate improves response inhibition but not reflection-impulsivity in children with attention deficit hyperactivity disorder (ADHD). Psychopharmacology 202(1–3):531–539

    Google Scholar 

  • Drewe EA (1975a) An experimental investigation of Luria’s theory on the effects of frontal lobe lesions in man. Neuropsychologia 13(4):421–429

    Article  PubMed  Google Scholar 

  • Drewe EA (1975b) Go-no go learning after frontal lobe lesions in humans. Cortex 11(1):8–16

    Article  PubMed  Google Scholar 

  • Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23(10):475–483

    Article  PubMed  Google Scholar 

  • Duque J, Labruna L, Verset S et al (2012) Dissociating the role of prefrontal and premotor cortices in controlling inhibitory mechanisms during motor preparation. J Neurosci 32(3):806–816

    Article  PubMed  PubMed Central  Google Scholar 

  • Durston S, Thomas KM, Worden MS et al (2002) The effect of preceding context on inhibition: an event-related fMRI study. Neuroimage 16(2):449–453

    Article  PubMed  Google Scholar 

  • Eagle DM, Bari A, Robbins TW (2008) The neuropsychopharmacology of action inhibition: cross-species translation of the stop-signal and go/no-go tasks. Psychopharmacology 199(3):439–456

    Article  PubMed  Google Scholar 

  • Faraone SV, Perlis RH, Doyle AE et al (2005) Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 57(11):1313–1323

    Article  PubMed  Google Scholar 

  • Feinberg TE, Schindler RJ, Flanagan NG, Haber LD (1992) Two alien hand syndromes. Neurology 42(1):19–24

    Article  PubMed  Google Scholar 

  • Gagné RM, Smith EC (1962) A study of the effects of verbalization on problem solving. J Exp Psychol 63:12–18

    Article  PubMed  Google Scholar 

  • Garavan H, Ross TJ, Murphy K et al (2002) Dissociable executive functions in the dynamic control of behavior: inhibition, error detection, and correction. Neuroimage 17(4):1820–1829

    Article  PubMed  Google Scholar 

  • Garavan H, Ross TJ, Stein EA (1999) Right hemispheric dominance of inhibitory control: an event-related functional MRI study. Proc Natl Acad Sci U S A 96(14):8301–8306

    Article  PubMed  PubMed Central  Google Scholar 

  • Geurts HM, Vert S, Oosterlaan J et al (2005) ADHD subtypes: do they differ in their executive functioning profile? Arch Clin Neuropsychol 20(4):457–477

    Article  PubMed  Google Scholar 

  • Gold JI, Shadlen MN (2007) The neural basis of decision making. Annu Rev Neurosci 30:535–574

    Article  PubMed  Google Scholar 

  • Goldberg E (1986) Varieties of perseveration: a comparison of two taxonomies. J Clin Exp Neuropsychol 8(6):710–726

    Article  PubMed  Google Scholar 

  • Gupta R, Kar BR (2009) Development of attentional processes in ADHD and normal children. Prog Brain Res 176:259–276

    Article  PubMed  Google Scholar 

  • Hanes DP, Schall JD (1995) Countermanding saccades in macaque. Vis Neurosci 12(5):929–937

    Article  PubMed  Google Scholar 

  • Hanes DP, Schall JD (1996) Neural control of voluntary movement initiation. Science 274(5286):427–430

    Article  PubMed  Google Scholar 

  • Hanes DP, Patterson WF, Schall JD (1998) Role of frontal eye fields in countermanding saccades: visual, movement, and fixation activity. J Neurophysiol 79(2):817–834

    PubMed  Google Scholar 

  • Hodgson T, Chamberlain M, Parris B (2007) The role of the ventrolateral frontal cortex in inhibitory oculomotor control. Brain 130(Pt 6):1525–1537

    Article  PubMed  Google Scholar 

  • Hoffmann MW, Bill PL (1992) The environmental dependency syndrome, imitation behaviour and utilisation behaviour as presenting symptoms of bilateral frontal lobe infarction due to moyamoya disease. S Afr Med J 81(5):271–273

    PubMed  Google Scholar 

  • Huster RJ, Eichele T, Enriquez-Geppert S et al (2011) Multimodal imaging of functional networks and event-related potentials in performance monitoring. Neuroimage 56(3):1588–1597

    Article  PubMed  Google Scholar 

  • Ito S, Stuphorn V, Brown JW (2003) Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science 302(5642):120–122

    Article  PubMed  Google Scholar 

  • Karch S, Mulert C, Thalmeier T et al (2009) The free choice whether or not to respond after stimulus presentation. Hum Brain Mapp 30(9):2971–2985

    Article  PubMed  Google Scholar 

  • Kashima H, Kato M (1993) Tests for frontal function-pattern of frontal dysfunction and its assessment. Shinkei Kenkyu no Shinpo 37:93–110

    Google Scholar 

  • Kertesz A, Nicholson I, Cancelliere A et al (1985) Motor impersistence: a right-hemisphere syndrome. Neurology 35(5):662–666

    Article  PubMed  Google Scholar 

  • Khan SA, Faraone SV (2006) The genetics of ADHD: a literature review of 2005. Curr Psychiatry Rep 8(5):393–397

    Article  PubMed  Google Scholar 

  • Knight RT (1984) Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalogr Clin Neurophysiol 59(1):9–20

    Article  PubMed  Google Scholar 

  • Konishi S, Nakajima K, Uchida I et al (1998) No-go dominant brain activity in human inferior prefrontal cortex revealed by functional magnetic resonance imaging. Eur J Neurosci 10(3):1209–1213

    Article  PubMed  Google Scholar 

  • Konishi S, Nakajima K, Uchida I et al (1999) Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI. Brain 122(Pt 5):981–991

    Article  PubMed  Google Scholar 

  • Kühn S, Bodammer NC, Brass M (2010) Dissociating mental states related to doing nothing by means of fMRI pattern classification. Neuroimage 53(4):1294–1300

    Article  PubMed  Google Scholar 

  • Kühn S, Elsner B, Prinz W, Brass M (2009a) Busy doing nothing: evidence for nonaction–effect binding. Psychon Bull Rev 16(3):542–549

    Article  PubMed  Google Scholar 

  • Kühn S, Gevers W, Brass M (2009b) The neural correlates of intending not to do something. J Neurophysiol 101(4):1913–1920

    Article  PubMed  Google Scholar 

  • Lhermitte F, Pillon B, Serdaru M (1986) Human autonomy and the frontal lobes. Part I: Imitation and utilization behavior: a neuropsychological study of 75 patients. Ann Neurol 19(4):326–334

    Article  PubMed  Google Scholar 

  • Li CSR, Huang C, Constable RT, Sinha R (2006) Imaging response inhibition in a stop-signal task: neural correlates independent of signal monitoring and post-response processing. J Neurosci 26(1):186–192

    Article  PubMed  Google Scholar 

  • Li CSR, Yan P, Sinha R, Lee TW (2008) Subcortical processes of motor response inhibition during a stop signal task. Neuroimage 41(4):1352–1363

    Article  PubMed  PubMed Central  Google Scholar 

  • Liddle PF, Kiehl KA, Smith AM (2001) Event-related fMRI study of response inhibition. Hum Brain Mapp 12(2):100–109

    Article  PubMed  Google Scholar 

  • Lijffijt M, Kenemans JL, Verbaten MN, van Engeland H (2005) A meta-analytic review of stopping performance in attention-deficit/hyperactivity disorder: deficient inhibitory motor control? J Abnorm Psychol 114(2):216–222

    Article  PubMed  Google Scholar 

  • Liotti M, Pliszka SR, Perez R et al (2007) Electrophysiological correlates of response inhibition in children and adolescents with ADHD: influence of gender, age, and previous treatment history. Psychophysiology 44(6):936–948

    Article  PubMed  Google Scholar 

  • Logan GD, Cowan WB (1984) On the ability to inhibit thought and action: a theory of an act of control. Psychol Rev 91(3):295–327

    Article  Google Scholar 

  • Luria AR (1966) Higher cortical functions in man. Basic Books, New York

    Google Scholar 

  • Madras BK, Miller GM, Fischman AJ (2005) The dopamine transporter and attention-deficit/hyperactivity disorder. Biol Psychiatry 57(11):1397–1409

    Article  PubMed  Google Scholar 

  • Majid DSA, Cai W, George JS et al (2012) Transcranial magnetic stimulation reveals dissociable mechanisms for global versus selective corticomotor suppression underlying the stopping of action. Cereb Cortex 22(2):363–371

    Article  PubMed  Google Scholar 

  • Makris N, Biederman J, Monuteaux MC, Seidman LJ (2009) Towards conceptualizing a neural systems-based anatomy of attention-deficit/hyperactivity disorder. Dev Neurosci 31(1–2):36–49

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsubara M, Yamaguchi S, Xu J, Kobayashi S (2004) Neural correlates for the suppression of habitual behavior: a functional MRI study. J Cogn Neurosci 16(6):944–954

    Article  PubMed  Google Scholar 

  • Menon V, Adleman NE, White CD et al (2001) Error-related brain activation during a go/nogo response inhibition task. Hum Brain Mapp 12(3):131–143

    Article  PubMed  Google Scholar 

  • Milner B (1963) Effects of different brain lesions on card sorting: The role of the frontal lobes. Arch Neurol 9(1):90–100

    Article  Google Scholar 

  • Nigg JT (2001) Is ADHD a disinhibitory disorder? Psychol Bull 127(5):571–598

    Article  PubMed  Google Scholar 

  • Nigg JT, Blaskey LG, Huang-Pollock CL, Rappley MD (2002) Neuropsychological executive functions and DSM-IV ADHD subtypes. J Am Acad Child Adolesc Psychiatry 41(1):59–66

    Article  PubMed  Google Scholar 

  • Oosterlaan J, Logan GD, Sergeant JA (1998) Response inhibition in AD/HD, CD, comorbid AD/HD + CD, anxious, and control children: a meta-analysis of studies with the stop task. J Child Psychol Psychiatry 39(3):411–425

    Article  PubMed  Google Scholar 

  • Pelham WE, Fabiano GA, Massetti GM (2005) Evidence-based assessment of attention deficit hyperactivity disorder in children and adolescents. J Clin Child Adolesc Psychol 34(3):449–476

    Article  PubMed  Google Scholar 

  • Perret E (1974) The left frontal lobe of man and the suppression of habitual responses in verbal categorical behaviour. Neuropsychologia 12(3):323–330

    Article  PubMed  Google Scholar 

  • Reitan RM (1955) The relation of the trail making test to organic brain damage. J Consult Psychol 19(5):393–394

    Article  PubMed  Google Scholar 

  • Renzi ED, Barbieri C (1992) The incidence of the grasp reflex following hemispheric lesion and its relation to frontal damage. Brain 115(Pt1):293–313

    Article  PubMed  Google Scholar 

  • Renzi ED, Cavalleri F, Facchini S (1996) Imitation and utilisation behaviour. J Neurol Neurosurg Psychiatry 61(4):396–400

    Article  PubMed  PubMed Central  Google Scholar 

  • Rommelse NNJ, Altink ME, Oosterlaan J et al (2008) Support for an independent familial segregation of executive and intelligence endophenotypes in ADHD families. Psychol Med 38(11):1595–1606

    Article  PubMed  Google Scholar 

  • Rubia K, Smith AB, Brammer MJ, Taylor E (2003) Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage 20(1):351–358

    Article  PubMed  Google Scholar 

  • Sandson J, Albert ML (1984) Varieties of perseveration. Neuropsychologia 22(6):715–732

    Article  PubMed  Google Scholar 

  • Schachar R, Logan GD (1990) Impulsivity and inhibitory control in normal development and childhood psychopathology. Dev Psychol 26(5):710–720

    Article  Google Scholar 

  • Schachar R, Logan GD, Robaey P, Chen S, Ickowicz A, Barr C (2007) Restraint and cancellation: multiple inhibition deficits in attention deficit hyperactivity disorder. J Abnorm Child Psychol 35(2):229–238

    Article  PubMed  Google Scholar 

  • Schachar RJ, Forget-Dubois N, Dionne G et al (2011) Heritability of response inhibition in children. J Int Neuropsychol Soc 17(2):238–247

    Article  PubMed  Google Scholar 

  • Schall JD, Hanes DP, Thompson KG, King DJ (1995) Saccade target selection in frontal eye field of macaque. I. Visual and premovement activation. J Neurosci 15(10):6905–6918

    PubMed  Google Scholar 

  • Sharp DJ, Bonnelle V, Boissezon XD et al (2010) Distinct frontal systems for response inhibition, attentional capture, and error processing. Proc Natl Acad Sci U S A 107(13):6106–6111

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaw P, Rabin C (2009) New insights into attention-deficit/hyperactivity disorder using structural neuroimaging. Curr Psychiatry Rep 11(5):393–398

    Article  PubMed  Google Scholar 

  • Simmonds DJ, Pekar JJ, Mostofsky SH (2008) Meta-analysis of go/no-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia 46(1):224–232

    Article  PubMed  Google Scholar 

  • Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18(6):643–662

    Article  Google Scholar 

  • Stuphorn V, Schall JD (2006) Executive control of countermanding saccades by the supplementary eye field. Nat Neurosci 9(7):925–931

    Article  PubMed  Google Scholar 

  • Stuphorn V, Taylor TL, Schall JD (2000) Performance monitoring by the supplementary eye field. Nature 408(6814):857–860

    Article  PubMed  Google Scholar 

  • Stuss DT, Benson DF (1984) Neuropsychological studies of the frontal lobes. Psychol Bull 95(1):3–28

    Article  PubMed  Google Scholar 

  • Tabu H, Mima T, Aso T et al (2011) Functional relevance of pre-supplementary motor areas for the choice to stop during stop signal task. Neurosci Res 70(3):277–284

    Article  PubMed  Google Scholar 

  • Vendrell P, Junqu C, Pujol J et al (1995) The role of prefrontal regions in the Stroop task. Neuropsychologia 33(3):341–352

    Article  PubMed  Google Scholar 

  • Verbruggen F, Logan GD (2008) Response inhibition in the stop-signal paradigm. Trends Cogn Sci 12(11):418–424

    Article  PubMed  PubMed Central  Google Scholar 

  • Vink M, Kahn RS, Raemaekers M et al (2005) Function of striatum beyond inhibition and execution of motor responses. Hum Brain Mapp 25(3):336–344

    Article  PubMed  Google Scholar 

  • Watanabe M (1986a) Prefrontal unit activity during delayed conditional go/no-go discrimination in the monkey. I. Relation to the stimulus. Brain Res 382(1):1–14

    Article  PubMed  Google Scholar 

  • Watanabe M (1986b) Prefrontal unit activity during delayed conditional go/no-go discrimination in the monkey. II. Relation to go and no-go responses. Brain Res 382(1):15–27

    Article  PubMed  Google Scholar 

  • Weiss M, Worling D, Wasdell M (2003) A chart review study of the inattentive and combined types of ADHD. J Atten Disord 7(1):1–9

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shintaro Funahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Mochizuki, K., Funahashi, S. (2016). Response Inhibition. In: Jagaroo, V., Santangelo, S. (eds) Neurophenotypes. Innovations in Cognitive Neuroscience. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3846-5_7

Download citation

Publish with us

Policies and ethics