A Cognitive Source Coding Scheme for Multiple Description 3DTV Transmission

Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 158)


Multiple Description Coding has recently proved to be an effective solution for the robust transmission of 3D video sequences over unreliable channels. However, adapting the characteristics of the source coding strategy (Cognitive Source Coding) permits improving the quality of 3D visualization experienced by the end-user. This strategy has been successfully employed for standard video signals, but it can be applied to Multiple Description video coding for an effective transmission of 3D signals. The chapter presents a novel Cognitive Source Coding scheme that improves the performance of traditional Multiple Description Coding approaches by adaptively combining traditional predictive and Wyner-Ziv coders according to the characteristics of the video sequence and to the channel conditions. The approach is employed for video+depth 3D transmissions improving the average PSNR value up to 2.5 dB with respect to traditional MDC schemes.


Multiple description 3DTV transmission Distributed video coding Cognitive source coding DIBR video Robust video coding 



This work was partially supported by the PRIN 2008 project prot. 2008C59JNA founded by the Italian Ministry of University and Research (MIUR).


  1. 1.
    Shi S, Jeon W, Nahrsted K, Campbell R (2009) M-TEEVE: Real-time 3D video interaction and broadcasting framework for mobile devices. In: Proceedings of the 2nd international conference on immersive telecommunications (IMMERSCOM ’09), Berkeley, 2009Google Scholar
  2. 2.
    Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of the h.264/avc standard. IEEE Trans Circuits Syst Video Technol 17:1103–1120CrossRefGoogle Scholar
  3. 3.
    Katsaggelos AK, Eisenberg Y, Zhai F, Berry R, Pappas TN (2005) Advances in efficient resource allocation for packet-based real-time video transmission. Proc IEEE 93:135–147CrossRefGoogle Scholar
  4. 4.
    Milani S, Calvagno G, Bernardini R, Zontone, P (2008) Cross-layer joint optimization of FEC channel codes and multiple description coding for video delivery over IEEE 802.11e Links. In: Proceedings of the IEEE FMN (2008) Cardiff, Wales, September 2008. pp 472–478Google Scholar
  5. 5.
    Karim HA, Hewage CTER, Worral S, Kondoz AM (2008) Scalable multiple description video coding for stereoscopic 3D. IEEE Trans Consumer Electron 54:745–752CrossRefGoogle Scholar
  6. 6.
    Crave O, Guillemot C, Pesquet-Popescu B, Tillier C (2007) Robust video transmission based on distributed multiple description coding. In: Proceedings of the EUSIPCO, Poznan, 2007. pp 1432–1436Google Scholar
  7. 7.
    Mitola J, Maguire GQ Jr (1999) Cognitive radio: making software radios more personal. IEEE Personal Commun Mag 6:13–18CrossRefGoogle Scholar
  8. 8.
    Haykin S (2005) Cognitive radio: brain-empowered wireless communications. IEEE J Sel Areas Commun 23:201–220 (Invited)Google Scholar
  9. 9.
    Fehn C (2004) 3D-TV using depth-image-based rendering (DIBR). In: Proceedings of the PCS, San Francisco, December 2004Google Scholar
  10. 10.
    Aksay A, Bilen C, Kurutepe E, Ozcelebi T, Akar GB, Civanlar R, Tekalp M (2006) Temporal and spatial scaling for stereoscopic video compression. In: Proceedings of the 14th european signal processing conference (EUSIPCO 2006), Florence, September 2006Google Scholar
  11. 11.
    Karim HA, Hewage CTER, Yu AC, Worral S, Dogan S, Kondoz AM (2007) Scalable multiple description 3D video coding based on even and odd frame. In: Proceedings of the picture coding symposium, Lisbon, November 2007Google Scholar
  12. 12.
    Alregib G, Altunbasak Y, Rossignac J (2005) Error-resilient transmission of 3D models. ACM Trans Graph 24:182–208CrossRefGoogle Scholar
  13. 13.
    Balter R, Gioia P, Morin L (2006) Scalable and efficient coding using 3D modeling. IEEE Trans Multimedia 8:1147–1155CrossRefGoogle Scholar
  14. 14.
    Norkin A, Aksay A, Bilen C, Akar GB, Gotchev A, Astola J (2006) Schemes for multiple escription coding of stereoscopic 3D. Lecture notes in computer science, vol 4105. Springer, Heildelberg, pp 730–737Google Scholar
  15. 15.
    Yeo C, Ramchandran K (2007) Robust distributed multiview video compression for wireless camera networks. In: Proceedings of VCIP, San Jose, 2007. vol 6508, pp 65080P-1–65080P-9Google Scholar
  16. 16.
    Puri R, Ramchandran K (2002) PRISM: A new robust video coding architecture based on distributed compression principles. In: Proceedings of the 40th Allerton conference on communication, control and computing, Allerton, October 2002. pp 402–408Google Scholar
  17. 17.
    Adikari ABB, Fernando WAC, Weerakkody WARJ, Kondoz A, Martínez JL, Cuenca P (2008) DVC based stereoscopic video transmission in a mobile communication system. In: Proceedings of the (2008) IEEE international conference on future multimedia networks (FMN 2008) (co-located with NGMAST2008), Cardiff, Wales, 2008. pp 439–443Google Scholar
  18. 18.
    Jagmohan A, Ahuja N (2003) Wyner-Ziv encoded predictive multiple descriptions. In: Proceedings of the data compression conference (DCC 2003) Snowbird, 2003. pp 213–222Google Scholar
  19. 19.
    Wu M, Vetro A, Chen CW (2004) Multiple description image coding with distributed source coding and side information. In: Proceedings of SPIE multimedia systems and applications VII, Philadelphia, October 2004. vol 5600, pp 120–127Google Scholar
  20. 20.
    Wang J, Wu X, Yu S, Sun, J (2006) Multiple descriptions in the Wyner-Ziv setting. In: Proceedings of the IEEE international symposium on information theory (ISIT 2006), Seattle, July 2006. pp 1584–1588Google Scholar
  21. 21.
    Fan Y, Wang J, Sun J, Wang P, Yu S (2003) A novel multiple description video codec based on Slepian-Wolf coding. In: Proceedings of the data compression conference (DCC 2008), Snowbird, 2003. p 515Google Scholar
  22. 22.
    Wang A, Zhao Y, Bai H (2009) Robust multiple description distributed video coding using optimized zero-padding. Sci China Ser F Inf Sci 52:206–214MATHCrossRefGoogle Scholar
  23. 23.
    Crave O, Guillemot C, Pesquet-Popescu B, Tillier C (2008) Multiple description source coding with side information. In: Proceedings of the 16th european signal processing conference (EUSIPCO 2008), Lausanne, 2008.Google Scholar
  24. 24.
    Aaron A, Zhang R, Girod, B.: Wyner-Ziv coding for motion video. In: Proceedings of asilomar conference on signals, systems and computers, Pacific Grove, 2002. vol 1, pp 240–244Google Scholar
  25. 25.
    Artigas X, Ascenso J, Dalai M, Klomp S, Kubasov D, Ouaret M (2007) The DISCOVER codec: architecture, techniques and evaluation. In: Proceedings of the 26th picture coding symposium (PCS 2007), Lisbon, 2007Google Scholar
  26. 26.
    Milani S, Calvagno G (2009) A distributed video coding approach for multiple description video transmission over lossy channels. In: 17th european signal processing conference 2009, Glasgow, Scotland, 2009Google Scholar
  27. 27.
    Milani S, Calvagno G (2010) Multiple description distributed video coding using redundant Slices and Lossy syndromes. IEEE Signal Process Lett 17:51–54CrossRefGoogle Scholar
  28. 28.
    Milani S, Calvagno G (2009) A distributed video coding approach for multiple escription video coding of stereo sequences. In: Proceedings of the 2009 GTTI annual meeting, Parma, 2009Google Scholar
  29. 29.
    Milani S, Calvagno G (2010) A cognitive source coding scheme for multiple description 3DTV transmission. In: Proceedings of the 11th international workshop on image analysis for multimedia interactive services (WIAMIS 2010), Desenzano del Garda, Brescia, 2010Google Scholar
  30. 30.
    Milani S, Calvagno G (2010) A cognitive approach for effective coding and transmission of 3D video. In: Proceedings ACM multimedia 2010, Florence, 2010Google Scholar
  31. 31.
    Wiegand T (2004) Version 3 of H.264/AVC. In: Joint Video Team (JVT) of ISO/IEC MPEG& ITU-T VCEG (ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6), \(12^{th}\) Meeting, Redmond, 2004Google Scholar
  32. 32.
    Sheng F, Li-Wei Z, Ling H (2007) An adaptive nested scalar quantization scheme for distributed video coding. In: Proceedings of the IEEE workshop on signal processing systems (SiPS 2007), Shanghai, 2007. pp 351–356Google Scholar
  33. 33.
    Puri R, Majumdar A, Ramchandran K (2007) PRISM: a video coding paradigm with motion estimation at the decoder. IEEE Trans Image Process 16:2436–2448MathSciNetCrossRefGoogle Scholar
  34. 34.
  35. 35.
    Mobite3DTV Project: (Repository of Mobile3DTV project: 3D Video database)
  36. 36.
    Smolic A (Repository FhG-HHI on 3DTV Network of Excellence Web Page)

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Information EngineeringUniversity of PadovaPadovaItaly

Personalised recommendations