Skip to main content

Therapeutic Drug Monitoring of Targeted Anticancer Therapy. Tyrosine Kinase Inhibitors and Selective Estrogen Receptor Modulators: A Clinical Pharmacology Laboratory Perspective

  • Chapter
  • First Online:
Book cover LC-MS in Drug Bioanalysis

Abstract

In the last decade, a new era of cancer therapy has emerged, and the treatment of several cancers has shifted from cytotoxic and nonspecific chemotherapy to chronic oral treatment with targeted molecular therapies. Most oral anticancer-targeted drugs approved at present are tyrosine kinase inhibitors (TKIs) and some of them are accompanied with diagnostic test aiming at preselecting patients who are more likely to respond to anticancer treatment, constituting vivid examples of the emerging field of personalized medicine. In that context, since most TKIs are also characterized by an important interindividual variability in their pharmacokinetics, renewed efforts for treatment optimization should be made for targeting adequate drug exposure in patients, increasing thereby the likelihood of optimal clinical response and tolerability of anticancer treatment. This can be done through the Therapeutic Drug Monitoring (TDM) approach, whereby the careful selection of TKI dosage is adapted to each patient according to individual plasma levels, contributing to minimize the risk of major adverse reactions and to increase the probability of efficient, long-lasting, therapeutic response. This chapter reviews the bioanalytical developments by chromatography and mass spectrometry in the field of targeted anticancer therapy, across the growing family of recent FDA-approved oral TKIs as well as for tamoxifen and its active metabolites, being in fact the most widely used targeted anticancer agent. The text also provides an introduction to existing pharmacokinetics–pharmacodynamics knowledge in the field of targeted anticancer therapy, and the rationale for a TDM program for TKIs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A et al (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Google Scholar 

  2. Chabner BA et al (2005) Timeline: chemotherapy and the war on cancer. Nat Rev Cancer 5:65–72

    CAS  Google Scholar 

  3. Giamas G et al (2010) Kinases as targets in the treatment of solid tumors. Cell Signal 22:984–1002

    CAS  Google Scholar 

  4. Hughes TP, et al. Monitoring disease response to tyrosine kinase inhibitor therapy in CML. Hematology Am Soc Hematol Educ Program. 2009:477–87

    Google Scholar 

  5. Table of pharmacogenomic biomarkers in drug labels. Last accessed 5 Jan 2012

    Google Scholar 

  6. Schilsky RL (2010) Personalized medicine in oncology: the future is now. Nat Rev Drug Discov 9:363–366

    CAS  Google Scholar 

  7. McDermott U et al (2009) Personalized cancer therapy with selective kinase inhibitors: an emerging paradigm in medical oncology. J Clin Oncol 27:5650–5659

    CAS  Google Scholar 

  8. Cortes JE et al (2009) Pharmacokinetic/pharmacodynamic correlation and blood-level testing in imatinib therapy for chronic myeloid leukemia. Leukemia 23:1537–1544

    CAS  Google Scholar 

  9. von Mehren M et al (2011) Correlations between imatinib pharmacokinetics, pharmacodynamics, adherence, and clinical response in advanced metastatic gastrointestinal stromal tumor (GIST): an emerging role for drug blood level testing? Cancer Treat Rev 37:291–299

    Google Scholar 

  10. Stearns V et al (2003) Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J Natl Cancer Inst 95:1758–1764

    CAS  Google Scholar 

  11. Borges S et al (2006) Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther 80:61–74

    CAS  Google Scholar 

  12. Widmer N et al (2004) Determination of imatinib (gleevec) in human plasma by solid-phase extraction-liquid chromatography-ultraviolet absorbance detection. J Chromatogr B Analyt Technol Biomed Life Sci 803:285–292

    CAS  Google Scholar 

  13. Krause DS et al (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med 353:172–187

    CAS  Google Scholar 

  14. Oliff A et al (1996) New molecular targets for cancer therapy. Sci Am 275:144–149

    CAS  Google Scholar 

  15. Larson RA et al (2008) Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood 111:4022–4028

    CAS  Google Scholar 

  16. Picard S et al (2007) Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 109:3496–3499

    CAS  Google Scholar 

  17. Demetri GD et al (2009) Imatinib plasma levels are correlated with clinical benefit in patients with unresectable/metastatic gastrointestinal stromal tumors. J Clin Oncol 27(19):3141–3147

    CAS  Google Scholar 

  18. Peng B et al (2005) Clinical pharmacokinetics of imatinib. Clin Pharmacokinet 44:879–894

    CAS  Google Scholar 

  19. Widmer N et al (2008) Relationship of imatinib-free plasma levels and target genotype with efficacy and tolerability. Br J Cancer 98:1633–1640

    CAS  Google Scholar 

  20. Widmer N et al (2010) Imatinib plasma levels: correlation with clinical benefit in GIST patients. Br J Cancer 102:1198–1199

    CAS  Google Scholar 

  21. Badalamenti G et al (2007) Gastrointestinal stromal tumors (GISTs): focus on histopathological diagnosis and biomolecular features. Ann Oncol 18(Suppl 6):vi136–vi140

    Google Scholar 

  22. Geyer CE et al (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355:2733–2743

    CAS  Google Scholar 

  23. Le TC et al (2008) New developments in multitargeted therapy for patients with solid tumours. Cancer Treat Rev 34:37–48

    Google Scholar 

  24. Mitsudomi T et al (2005) Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. J Clin Oncol 23:2513–2520

    CAS  Google Scholar 

  25. Cadranel J et al (2011) Genetic profiling and epidermal growth factor receptor-directed therapy in nonsmall cell lung cancer. Eur Respir J 37:183–193

    CAS  Google Scholar 

  26. Commander H et al (2011) Vandetanib: first global approval. Drugs 71:1355–1365

    CAS  Google Scholar 

  27. Flaherty KT et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819

    CAS  Google Scholar 

  28. Sasaki T et al (2011) New strategies for treatment of ALK-rearranged non-small cell lung cancers. Clin Cancer Res 17:7213–7218

    CAS  Google Scholar 

  29. Widmer N et al (2008) Principles of therapeutic drug monitoring. Rev Med Suisse 4:1644–1648

    Google Scholar 

  30. Widmer N et al (2008) Therapeutic drug monitoring: the clinical practice. Rev Med Suisse 4:1649–1660

    Google Scholar 

  31. Decosterd LA et al (2010) Multiplex ultra-performance liquid chromatography-tandem mass spectrometry method for simultaneous quantification in human plasma of fluconazole, itraconazole, hydroxyitraconazole, posaconazole, voriconazole, voriconazole-N-oxide, anidulafungin, and caspofungin. Antimicrob Agents Chemother 54:5303–5315

    CAS  Google Scholar 

  32. Fayet A et al (2009) A LC-tandem MS assay for the simultaneous measurement of new antiretroviral agents: raltegravir, maraviroc, darunavir, and etravirine. J Chromatogr B Analyt Technol Biomed Life Sci 877:1057–1069

    CAS  Google Scholar 

  33. Fayet Mello A et al (2011) Successful efavirenz dose reduction guided by therapeutic drug monitoring. Antivir Ther 16:189–197

    Google Scholar 

  34. Gotta V et al (2010) Suivi thérapeutique de l’imatinib. Forum Med Suisse 10:403–406

    Google Scholar 

  35. Gervasini G et al (2010) Pharmacogenetic testing and therapeutic drug monitoring are complementary tools for optimal individualization of drug therapy. Eur J Clin Pharmacol 66:755–774

    CAS  Google Scholar 

  36. McMahon G et al (2009) Therapeutic drug monitoring in oncology: does it have a future? Bioanalysis 1:507–511

    CAS  Google Scholar 

  37. Lennard L (2001) Therapeutic drug monitoring of cytotoxic drugs. Br J Clin Pharmacol 52(Suppl 1):75S–87S

    CAS  Google Scholar 

  38. Kamath AV et al (2008) Preclinical pharmacokinetics and in vitro metabolism of dasatinib (BMS-354825): a potent oral multi-targeted kinase inhibitor against SRC and BCR-ABL. Cancer Chemother Pharmacol 61:365–376

    CAS  Google Scholar 

  39. Lathia C et al (2006) Lack of effect of ketoconazole-mediated CYP3A inhibition on sorafenib clinical pharmacokinetics. Cancer Chemother Pharmacol 57:685–692

    CAS  Google Scholar 

  40. O’Brien SG et al (2003) Effects of imatinib mesylate (STI571, glivec) on the pharmacokinetics of simvastatin, a cytochrome p450 3A4 substrate, in patients with chronic myeloid leukaemia. Br J Cancer 89:1855–1859

    Google Scholar 

  41. White DL et al (2006) OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood 108:697–704

    CAS  Google Scholar 

  42. Widmer N et al (2006) Population pharmacokinetics of imatinib and the role of alpha-acid glycoprotein. Br J Clin Pharmacol 62:97–112

    CAS  Google Scholar 

  43. Haouala A et al. (2011) Prediction of free imatinib concentrations based on total plasma levels in GIST patients. Br J Clin Pharmacol, in press

    Google Scholar 

  44. Hazarika M et al (2008) Tasigna for chronic and accelerated phase Philadelphia chromosome–positive chronic myelogenous leukemia resistant to or intolerant of imatinib. Clin Cancer Res 14:5325–5331

    CAS  Google Scholar 

  45. Koch KM et al (2009) Effects of food on the relative bioavailability of lapatinib in cancer patients. J Clin Oncol 27:1191–1196

    CAS  Google Scholar 

  46. Dai G et al (2008) Importance of characterizing determinants of variability in exposure: application to dasatinib in subjects with chronic myeloid leukemia. J Clin Pharmacol 48(11):1254–1269

    CAS  Google Scholar 

  47. Houk BE et al (2010) Relationship between exposure to sunitinib and efficacy and tolerability endpoints in patients with cancer: results of a pharmacokinetic/pharmacodynamic meta-analysis. Cancer Chemother Pharmacol 66:357–371

    CAS  Google Scholar 

  48. Klumpen HJ et al (2011) Moving towards dose individualization of tyrosine kinase inhibitors. Cancer Treat Rev 37(4):251–260

    Google Scholar 

  49. Moore M et al (2005) Phase I study to determine the safety and pharmacokinetics of the novel Raf kinase and VEGFR inhibitor BAY 43-9006, administered for 28 days on/7 days off in patients with advanced, refractory solid tumors. Ann Oncol 16:1688–1694

    CAS  Google Scholar 

  50. Peng B et al (2004) Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. J Clin Oncol 22:935–942

    CAS  Google Scholar 

  51. Strumberg D et al (2005) Phase I clinical and pharmacokinetic study of the novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol 23:965–972

    CAS  Google Scholar 

  52. Tan AR et al (2004) Evaluation of biologic end points and pharmacokinetics in patients with metastatic breast cancer after treatment with erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor. J Clin Oncol 22:3080–3090

    CAS  Google Scholar 

  53. Burris HA III et al (2005) Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J Clin Oncol 23:5305–5313

    CAS  Google Scholar 

  54. Kantarjian H et al (2010) Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 362:2260–2270

    CAS  Google Scholar 

  55. Soulieres D et al (2004) Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol 22:77–85

    CAS  Google Scholar 

  56. Buclin T et al (2011) Who is in charge of assessing therapeutic drug monitoring? The case of imatinib. Lancet Oncol 12:9–11

    Google Scholar 

  57. van Erp NP et al (2009) Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev 35:692–706

    Google Scholar 

  58. Bouchet S et al (2010) Therapeutic drug monitoring of tyrosine-kinase inhibitors in the treatment of chronic myelogenous leukaemia: interests and limits. Therapie 65:213–218

    Google Scholar 

  59. Gambacorti-Passerini C et al (2000) Role of alpha1 acid glycoprotein in the in vivo resistance of human BCR-ABL(+) leukemic cells to the abl inhibitor STI571. J Natl Cancer Inst 92:1641–1650

    CAS  Google Scholar 

  60. le CP et al (2004) Pharmacokinetics and cellular uptake of imatinib and its main metabolite CGP74588. Cancer Chemother Pharmacol 53:313–323

    Google Scholar 

  61. Wang L et al (2008) Expression of the uptake drug transporter hOCT1 is an important clinical determinant of the response to imatinib in chronic myeloid leukemia. Clin Pharmacol Ther 83:258–264

    CAS  Google Scholar 

  62. Haouala A et al (2010) Cardiovascular drug interactions with tyrosine kinase inhibitors. Cardiovasc Med 13:147–154

    Google Scholar 

  63. Haouala A et al (2011) Drug interactions with the tyrosine kinase inhibitors imatinib, dasatinib, and nilotinib. Blood 117:e75–e87

    CAS  Google Scholar 

  64. Gambillara E et al (2005) Severe pustular eruption associated with imatinib and voriconazole in a patient with chronic myeloid leukemia. Dermatology 211:363–365

    CAS  Google Scholar 

  65. Druker BJ et al (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355:2408–2417

    CAS  Google Scholar 

  66. Takahashi N et al (2010) Correlation between imatinib pharmacokinetics and clinical response in Japanese patients with chronic-phase chronic myeloid leukemia. Clin Pharmacol Ther 88:809–813

    CAS  Google Scholar 

  67. Singh N et al (2009) Drug monitoring of imatinib levels in patients undergoing therapy for chronic myeloid leukaemia: comparing plasma levels of responders and non-responders. Eur J Clin Pharmacol 65:545–549

    CAS  Google Scholar 

  68. Awidi A et al (2010) Relationship of serum imatinib trough level and response in CML patients: long term follow-up. Leuk Res 34:1573–1575

    CAS  Google Scholar 

  69. Faber E et al (2010) Imatinib dose escalation in two patients with chronic myeloid leukemia, with low trough imatinib plasma levels measured at various intervals from the beginning of therapy and with suboptimal treatment response, leads to the achievement of higher plasma levels and major molecular response. Int J Hematol 91:897–902

    Google Scholar 

  70. Larson RA (2009) Therapeutic monitoring of drug plasma concentrations and improved clinical outcomes in CML. Clin Adv Hematol Oncol 7:S3–S5

    Google Scholar 

  71. Kantarjian H et al (2006) Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 354:2542–2551

    Google Scholar 

  72. Saglio G et al (2010) Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med 362:2251–2259

    CAS  Google Scholar 

  73. Milojkovic D et al (2009) Mechanisms of resistance to imatinib and second-generation tyrosine inhibitors in chronic myeloid leukemia. Clin Cancer Res 15:7519–7527

    CAS  Google Scholar 

  74. Wang X et al. (2008) Dasatinib pharmacokinetics and exposure-response (E-R): relationship to safety and efficacy in patients (pts) with chronic myeloid leukemia (CML). J Clin Oncol. 26 (No 15 S) (May 20 Suppl, Abstract 3590)

    Google Scholar 

  75. Mendel DB et al (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 9:327–337

    CAS  Google Scholar 

  76. Faivre S et al (2006) Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J Clin Oncol 24:25–35

    CAS  Google Scholar 

  77. Billemont B, et al. (2009) Correlation of sorafenib plasma concentrations and clinical toxicity: a prospective population pharmacodynamic and pharmacokinetic study. J Clin Oncol 27 (No 15 S) (May 20 Suppl, e14585)

    Google Scholar 

  78. Ratain MJ et al (2007) The value meal: how to save $1,700 per month or more on lapatinib. J Clin Oncol 25:3397–3398

    Google Scholar 

  79. Li J et al (2006) CYP3A Phenotyping approach to predict systemic exposure to EGFR tyrosine kinase inhibitors. J Natl Cancer Inst 98:1714–1723

    CAS  Google Scholar 

  80. Martin P et al (2012) Pharmacokinetics of vandetanib: three phase I studies in healthy subjects. Clin Ther 34(1):221–237

    CAS  Google Scholar 

  81. Zhang L et al (2011) Pharmacokinetics and tolerability of vandetanib in Chinese patients with solid, malignant tumors: an open-label, phase I, rising multiple-dose study. Clin Ther 33:315–327

    CAS  Google Scholar 

  82. Martin P et al (2011) Pharmacokinetic drug interactions with vandetanib during coadministration with rifampicin or itraconazole. Drugs R&D 11:37–51

    Google Scholar 

  83. Weil A et al (2010) Pharmacokinetics of vandetanib in subjects with renal or hepatic impairment. Clin Pharmacokinet 49:607–618

    CAS  Google Scholar 

  84. Weisberg E et al (2007) Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer 7:345–356

    CAS  Google Scholar 

  85. Santos FP et al (2010) Bafetinib, a dual Bcr-Abl/Lyn tyrosine kinase inhibitor for the potential treatment of leukemia. Curr Opin Investig Drugs 11:1450–1465

    CAS  Google Scholar 

  86. Keisner SV et al (2011) Pazopanib: the newest tyrosine kinase inhibitor for the treatment of advanced or metastatic renal cell carcinoma. Drugs 71:443–454

    CAS  Google Scholar 

  87. Abbas R et al (2011) Pharmacokinetics of oral neratinib during co-administration of ketoconazole in healthy subjects. Br J Clin Pharmacol 71:522–527

    CAS  Google Scholar 

  88. Abbas R et al (2011) Effect of ketoconazole on the pharmacokinetics of oral bosutinib in healthy subjects. J Clin Pharmacol 51:1721–1727

    CAS  Google Scholar 

  89. Jost LM et al (2006) Metabolism and disposition of vatalanib (PTK787/ZK-222584) in cancer patients. Drug Metab Dispos 34:1817–1828

    CAS  Google Scholar 

  90. Chiorean EG et al (2010) A phase I dose escalation and pharmacokinetic study of vatalanib (PTK787/ZK 222584) in combination with paclitaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol 66:441–448

    CAS  Google Scholar 

  91. Reardon DA et al (2009) Phase I pharmacokinetic study of the vascular endothelial growth factor receptor tyrosine kinase inhibitor vatalanib (PTK787) plus imatinib and hydroxyurea for malignant glioma. Cancer 115:2188–2198

    CAS  Google Scholar 

  92. Fox E et al (2010) A phase 1 trial and pharmacokinetic study of cediranib, an orally bioavailable pan-vascular endothelial growth factor receptor inhibitor, in children and adolescents with refractory solid tumors. J Clin Oncol 28:5174–5181

    CAS  Google Scholar 

  93. Yamamoto N et al (2009) Phase I, dose escalation and pharmacokinetic study of cediranib (RECENTIN), a highly potent and selective VEGFR signaling inhibitor, in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol 64:1165–1172

    CAS  Google Scholar 

  94. Goss G et al (2009) A phase I and pharmacokinetic study of daily oral cediranib, an inhibitor of vascular endothelial growth factor tyrosine kinases, in combination with cisplatin and gemcitabine in patients with advanced non-small cell lung cancer: a study of the national cancer institute of Canada clinical trials group. Eur J Cancer 45:782–788

    CAS  Google Scholar 

  95. Li C et al (2009) In vitro metabolism of the novel, highly selective oral angiogenesis inhibitor motesanib diphosphate in preclinical species and in humans. Drug Metab Dispos 37:1378–1394

    CAS  Google Scholar 

  96. TARCEVA®: Scientific Discussion page 11. European Medicines Agency 2005. www.ema.europa.eu, last accessed 12 Dec 2011

  97. Costa DB et al (2011) CSF concentration of the anaplastic lymphoma kinase inhibitor crizotinib. J Clin Oncol 29:e443–e445

    Google Scholar 

  98. Tan W, et al. (2010) Pharmacokinetics (PK) of PF-02341066. a dula ALK/MET inhibitor after multiple oral dose to advanced cancer patients. J Clin Oncol 28 (228 s) (supplement, abstract 2596)

    Google Scholar 

  99. Hidalgo M et al (2003) Pharmacokinetics and pharmacodynamics: maximizing the clinical potential of erlotinib (tarceva). Semin Oncol 30:25–33

    CAS  Google Scholar 

  100. Lu JF et al (2006) Clinical pharmacokinetics of erlotinib in patients with solid tumors and exposure-safety relationship in patients with non-small cell lung cancer. Clin Pharmacol Ther 80:136–145

    CAS  Google Scholar 

  101. Mohamed MK et al (2005) Skin rash and good performance status predict improved survival with gefitinib in patients with advanced non-small cell lung cancer. Ann Oncol 16:780–785

    CAS  Google Scholar 

  102. Eskens FA et al (2006) The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review. Eur J Cancer 42:3127–3139

    CAS  Google Scholar 

  103. Awidi A et al (2010) Determination of imatinib plasma levels in patients with chronic myeloid leukemia by high performance liquid chromatography-ultraviolet detection and liquid chromatography-tandem mass spectrometry: methods’ comparison. Leuk Res 34:714–717

    CAS  Google Scholar 

  104. Bakhtiar R et al (2002) High-throughput quantification of the anti-leukemia drug STI571 (gleevec) and its main metabolite (CGP 74588) in human plasma using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 768:325–340

    CAS  Google Scholar 

  105. Boddy AV et al (2007) Pharmacokinetic investigation of imatinib using accelerator mass spectrometry in patients with chronic myeloid leukemia. Clin Cancer Res 13:4164–4169

    CAS  Google Scholar 

  106. Guetens G et al (2003) Quantification of the anticancer agent STI-571 in erythrocytes and plasma by measurement of sediment technology and liquid chromatography-tandem mass spectrometry. J Chromatogr A 1020:27–34

    CAS  Google Scholar 

  107. Klawitter J et al (2009) Development and validation of a sensitive assay for the quantification of imatinib using LC/LC-MS/MS in human whole blood and cell culture. Biomed Chromatogr 23:1251–1258

    CAS  Google Scholar 

  108. Parise RA et al (2003) Liquid chromatographic-mass spectrometric assay for quantitation of imatinib and its main metabolite (CGP 74588) in plasma. J Chromatogr B Analyt Technol Biomed Life Sci 791:39–44

    CAS  Google Scholar 

  109. Rochat B et al (2008) Imatinib metabolite profiling in parallel to imatinib quantification in plasma of treated patients using liquid chromatography-mass spectrometry. J Mass Spectrom 43:736–752

    CAS  Google Scholar 

  110. Titier K et al (2005) Quantification of imatinib in human plasma by high-performance liquid chromatography-tandem mass spectrometry. Ther Drug Monit 27:634–640

    CAS  Google Scholar 

  111. Parise RA et al (2009) A high-performance liquid chromatography-mass spectrometry assay for quantitation of the tyrosine kinase inhibitor nilotinib in human plasma and serum. J Chromatogr B Analyt Technol Biomed Life Sci 877:1894–1900

    CAS  Google Scholar 

  112. Tanaka C et al (2010) Clinical pharmacokinetics of the BCR-ABL tyrosine kinase inhibitor nilotinib. Clin Pharmacol Ther 87:197–203

    CAS  Google Scholar 

  113. de Bruijn P et al (2010) Bioanalytical method for the quantification of sunitinib and its n-desethyl metabolite SU12662 in human plasma by ultra performance liquid chromatography/tandem triple-quadrupole mass spectrometry. J Pharm Biomed Anal 51:934–941

    Google Scholar 

  114. Minkin P et al (2008) Quantification of sunitinib in human plasma by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 874:84–88

    CAS  Google Scholar 

  115. Jain L et al (2008) Development of a rapid and sensitive LC-MS/MS assay for the determination of sorafenib in human plasma. J Pharm Biomed Anal 46:362–367

    CAS  Google Scholar 

  116. Zhao M et al (2007) A rapid and sensitive method for determination of sorafenib in human plasma using a liquid chromatography/tandem mass spectrometry assay. J Chromatogr B Analyt Technol Biomed Life Sci 846:1–7

    CAS  Google Scholar 

  117. Bai F et al (2006) Determination of lapatinib (GW572016) in human plasma by liquid chromatography electrospray tandem mass spectrometry (LC-ESI-MS/MS). J Chromatogr B Analyt Technol Biomed Life Sci 831:169–175

    CAS  Google Scholar 

  118. Bai F et al (2011) Determination of vandetanib in human plasma and cerebrospinal fluid by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). J Chromatogr B Analyt Technol Biomed Life Sci 879:2561–2566

    CAS  Google Scholar 

  119. Lankheet AG et al (2009) A validated assay for the quantitative analysis of vatalanib in human EDTA plasma by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 877:3625–3630

    CAS  Google Scholar 

  120. Sparidans RW et al (2009) Liquid chromatography-tandem mass spectrometric assay for the light sensitive tyrosine kinase inhibitor axitinib in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 877:4090–4096

    CAS  Google Scholar 

  121. Novakova L et al (2006) Advantages of application of UPLC in pharmaceutical analysis. Talanta 68:908–918

    CAS  Google Scholar 

  122. Haouala A et al (2009) Therapeutic drug monitoring of the new targeted anticancer agents imatinib, nilotinib, dasatinib, sunitinib, sorafenib and lapatinib by LC tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 877:1982–1996

    CAS  Google Scholar 

  123. Baratte S et al (2004) Quantitation of SU1 1248, an oral multi-target tyrosine kinase inhibitor, and its metabolite in monkey tissues by liquid chromatograph with tandem mass spectrometry following semi-automated liquid-liquid extraction. J Chromatogr A 1024:87–94

    CAS  Google Scholar 

  124. Anja Goedl P. Pfizer, Personal communication. 12 Dec 2007

    Google Scholar 

  125. Yamazaki S et al (2011) Prediction of oral pharmacokinetics of cMet kinase inhibitors in humans: physiologically based pharmacokinetic model versus traditional one-compartment model. Drug Metab Dispos 39:383–393

    CAS  Google Scholar 

  126. Christopher LJ et al (2008) Metabolism and disposition of dasatinib after oral administration to humans. Drug Metab Dispos 36:1357–1364

    CAS  Google Scholar 

  127. Furlong MT et al (2012) A validated LC-MS/MS assay for the simultaneous determination of the anti-leukemic agent dasatinib and two pharmacologically active metabolites in human plasma: application to a clinical pharmacokinetic study. J Pharm Biomed Anal 58:130–135

    CAS  Google Scholar 

  128. He K et al (2008) N-in-1 dosing pharmacokinetics in drug discovery: experience, theoretical and practical considerations. J Pharm Sci 97:2568–2580

    CAS  Google Scholar 

  129. Wu JT et al (2000) Direct plasma sample injection in multiple-component LC-MS-MS assays for high-throughput pharmacokinetic screening. Anal Chem 72:61–67

    CAS  Google Scholar 

  130. Hsieh Y et al (2002) Direct cocktail analysis of drug discovery compounds in pooled plasma samples using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 767:353–362

    CAS  Google Scholar 

  131. Kuo BS et al (1998) Sample pooling to expedite bioanalysis and pharmacokinetic research. J Pharm Biomed Anal 16:837–846

    CAS  Google Scholar 

  132. Kummar S et al (2010) Utilizing targeted cancer therapeutic agents in combination: novel approaches and urgent requirements. Nat Rev Drug Discov 9:843–856

    CAS  Google Scholar 

  133. De Francia S et al (2009) New HPLC-MS method for the simultaneous quantification of the antileukemia drugs imatinib, dasatinib, and nilotinib in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 877:1721–1726

    Google Scholar 

  134. Demetri GD et al (2009) Phase I dose-escalation and pharmacokinetic study of dasatinib in patients with advanced solid tumors. Clin Cancer Res 15:6232–6240

    CAS  Google Scholar 

  135. Chahbouni A et al (2009) Simultaneous quantification of erlotinib, gefitinib, and imatinib in human plasma by liquid chromatography tandem mass spectrometry. Ther Drug Monit 31:683–687

    CAS  Google Scholar 

  136. Honeywell R et al (2010) Simple and selective method for the determination of various tyrosine kinase inhibitors used in the clinical setting by liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 878:1059–1068

    CAS  Google Scholar 

  137. Gotze L et al (2012) Development and clinical application of a LC-MS/MS method for simultaneous determination of various tyrosine kinase inhibitors in human plasma. Clin Chim Acta 413:143–149

    Google Scholar 

  138. Bouchet S et al (2011) Simultaneous determination of nine tyrosine kinase inhibitors by 96-well solid-phase extraction and ultra performance LC/MS-MS. Clin Chim Acta 412:1060–1067

    CAS  Google Scholar 

  139. Neeman M et al. (2011) A LC-MS/MS for the assay of verumafenib, bosutinib, gefitinib and erlotinib in plasma from cancer patients, Master thesis, School of Pharmaceutical Sciences, University of Geneva and Lausanne, Switzerland

    Google Scholar 

  140. Rudin CM et al (2008) Pharmacogenomic and pharmacokinetic determinants of erlotinib toxicity. J Clin Oncol 26:1119–1127

    CAS  Google Scholar 

  141. Roche S et al (2009) Development of a high-performance liquid chromatographic-mass spectrometric method for the determination of cellular levels of the tyrosine kinase inhibitors lapatinib and dasatinib. J Chromatogr B Analyt Technol Biomed Life Sci 877:3982–3990

    CAS  Google Scholar 

  142. Hegedus C et al (2009) Interaction of nilotinib, dasatinib and bosutinib with ABCB1 and ABCG2: implications for altered anti-cancer effects and pharmacological properties. Br J Pharmacol 158:1153–1164

    CAS  Google Scholar 

  143. Haouala A et al (2010) SiRNA-mediated knock-down of P-glycoprotein expression reveals distinct cellular disposition of anticancer tyrosine kinases inhibitors. Drug Metab Lett 4:114–119

    CAS  Google Scholar 

  144. D’Avolio A et al (2012) HPLC-MS method for the simultaneous quantification of the antileukemia drugs imatinib, dasatinib and nilotinib in human peripheral blood mononuclear cell (PBMC). J Pharm Biomed Anal 59:109–116

    Google Scholar 

  145. Dahmane E et al (2010) An ultra performance liquid chromatography-tandem MS assay for tamoxifen metabolites profiling in plasma: first evidence of 4′-hydroxylated metabolites in breast cancer patients. J Chromatogr B Analyt Technol Biomed Life Sci 878:3402–3414

    CAS  Google Scholar 

  146. Jordan VC (2003) Tamoxifen: a most unlikely pioneering medicine. Nat Rev Drug Discov 2:205–213

    CAS  Google Scholar 

  147. Jordan VC (2006) Tamoxifen (ICI46,474) as a targeted therapy to treat and prevent breast cancer. Br J Pharmacol 147(Suppl 1):S269–S276

    CAS  Google Scholar 

  148. Jordan VC (2007) New insights into the metabolism of tamoxifen and its role in the treatment and prevention of breast cancer. Steroids 72:829–842

    CAS  Google Scholar 

  149. Osborne CK (1998) Tamoxifen in the treatment of breast cancer. N Engl J Med 339:1609–1618

    CAS  Google Scholar 

  150. Tamoxifen for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists’ Collaborative Group (1998). Lancet 351:1451–1467

    Google Scholar 

  151. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2005) Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 365:1687–1717

    Google Scholar 

  152. Goldhirsch A et al (2007) Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer 2007. Ann Oncol 18:1133–1144

    CAS  Google Scholar 

  153. Goldhirsch A et al (2009) Thresholds for therapies: highlights of the St gallen international expert consensus on the primary therapy of early breast cancer 2009. Ann Oncol 20:1319–1329

    CAS  Google Scholar 

  154. Visvanathan K et al (2009) American society of clinical oncology clinical practice guideline update on the use of pharmacologic interventions including tamoxifen, raloxifene, and aromatase inhibition for breast cancer risk reduction. J Clin Oncol 27:3235–3258

    CAS  Google Scholar 

  155. Mathew J et al (2009) Neoadjuvant endocrine treatment in primary breast cancer - review of literature. Breast 18:339–344

    CAS  Google Scholar 

  156. Chia YH et al (2010) Neoadjuvant endocrine therapy in primary breast cancer: indications and use as a research tool. Br J Cancer 103:759–764

    CAS  Google Scholar 

  157. Cuzick J et al (2011) Preventive therapy for breast cancer: a consensus statement. Lancet Oncol 12(5):496–503

    CAS  Google Scholar 

  158. Jensen EV et al (2003) The estrogen receptor: a model for molecular medicine. Clin Cancer Res 9:1980–1989

    CAS  Google Scholar 

  159. Riggs BL et al (2003) Selective estrogen-receptor modulators – mechanisms of action and application to clinical practice. N Engl J Med 348:618–629

    CAS  Google Scholar 

  160. Nilsson S et al (2005) Oestrogen receptors and selective oestrogen receptor modulators: molecular and cellular pharmacology. Basic Clin Pharmacol Toxicol 96:15–25

    CAS  Google Scholar 

  161. Orlando L et al (2010) Molecularly targeted endocrine therapies for breast cancer. Cancer Treat Rev 36(Suppl 3):S67–S71

    CAS  Google Scholar 

  162. Johnson MD et al (2004) Pharmacological characterization of 4-hydroxy-N-desmethyl tamoxifen, a novel active metabolite of tamoxifen. Breast Cancer Res Treat 85:151–159

    CAS  Google Scholar 

  163. Lim YC et al (2005) Endoxifen (4-hydroxy-N-desmethyl-tamoxifen) has anti-estrogenic effects in breast cancer cells with potency similar to 4-hydroxy-tamoxifen. Cancer Chemother Pharmacol 55:471–478

    CAS  Google Scholar 

  164. Lim YC et al (2006) Endoxifen, a secondary metabolite of tamoxifen, and 4-OH-tamoxifen induce similar changes in global gene expression patterns in MCF-7 breast cancer cells. J Pharmacol Exp Ther 318:503–512

    CAS  Google Scholar 

  165. Goetz MP et al (2008) Tamoxifen pharmacogenomics: the role of CYP2D6 as a predictor of drug response. Clin Pharmacol Ther 83:160–166

    CAS  Google Scholar 

  166. Wu X et al (2009) The tamoxifen metabolite, endoxifen, is a potent antiestrogen that targets estrogen receptor alpha for degradation in breast cancer cells. Cancer Res 69:1722–1727

    CAS  Google Scholar 

  167. Wu X et al (2011) Estrogen receptor-beta sensitizes breast cancer cells to the anti-estrogenic actions of endoxifen. Breast Cancer Res 13:R27

    CAS  Google Scholar 

  168. Crewe HK et al (1997) Variable contribution of cytochromes P450 2D6, 2 C9 and 3A4 to the 4-hydroxylation of tamoxifen by human liver microsomes. Biochem Pharmacol 53:171–178

    CAS  Google Scholar 

  169. Coller JK et al (2002) The influence of CYP2B6, CYP2C9 and CYP2D6 genotypes on the formation of the potent antioestrogen Z-4-hydroxy-tamoxifen in human liver. Br J Clin Pharmacol 54:157–167

    CAS  Google Scholar 

  170. Crewe HK et al (2002) Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: formation of the 4-hydroxy, 4′-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab Dispos 30:869–874

    CAS  Google Scholar 

  171. Desta Z et al (2004) Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A and CYP2D6. J Pharmacol Exp Ther 310:1062–1075

    CAS  Google Scholar 

  172. Jin Y et al (2005) CYP2D6 Genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst 97:30–39

    CAS  Google Scholar 

  173. Madlensky L et al (2011) Tamoxifen metabolite concentrations, CYP2D6 genotype, and breast cancer outcomes. Clin Pharmacol Ther 89:718–725

    CAS  Google Scholar 

  174. Zheng Y et al (2007) Elimination of antiestrogenic effects of active tamoxifen metabolites by glucuronidation. Drug Metab Dispos 35:1942–1948

    CAS  Google Scholar 

  175. Kaku T et al (2004) Quaternary ammonium-linked glucuronidation of tamoxifen by human liver microsomes and UDP-glucuronosyltransferase 1A4. Biochem Pharmacol 67:2093–2102

    CAS  Google Scholar 

  176. Ogura K et al (2006) Quaternary ammonium-linked glucuronidation of trans-4-hydroxytamoxifen, an active metabolite of tamoxifen, by human liver microsomes and UDP-glucuronosyltransferase 1A4. Biochem Pharmacol 71:1358–1369

    CAS  Google Scholar 

  177. Sun D et al (2006) Characterization of tamoxifen and 4-hydroxytamoxifen glucuronidation by human UGT1A4 variants. Breast Cancer Res 8:R50

    Google Scholar 

  178. Benoit-Biancamano MO, et al. (2009) A pharmacogenetics study of the human glucuronosyltransferase UGT1A4. Pharmacogenet Genomics [Epub ahead of print]

    Google Scholar 

  179. Sun D et al (2007) Glucuronidation of active tamoxifen metabolites by the human UDP glucuronosyltransferases. Drug Metab Dispos 35:2006–2014

    CAS  Google Scholar 

  180. Blevins-Primeau AS et al (2009) Functional significance of UDP-glucuronosyltransferase variants in the metabolism of active tamoxifen metabolites. Cancer Res 69:1892–1900

    CAS  Google Scholar 

  181. Chen G et al (2002) 4-Hydroxytamoxifen sulfation metabolism. J Biochem Mol Toxicol 16:279–285

    Google Scholar 

  182. Nishiyama T et al (2002) Reverse geometrical selectivity in glucuronidation and sulfation of cis- and trans-4-hydroxytamoxifens by human liver UDP-glucuronosyltransferases and sulfotransferases. Biochem Pharmacol 63:1817–1830

    CAS  Google Scholar 

  183. Falany JL et al (2006) Sulfation of raloxifene and 4-hydroxytamoxifen by human cytosolic sulfotransferases. Drug Metab Dispos 34:361–368

    CAS  Google Scholar 

  184. Nowell S et al (2006) Pharmacogenetics of human cytosolic sulfotransferases. Oncogene 25:1673–1678

    CAS  Google Scholar 

  185. Lien EA et al (1988) Identification of 4-hydroxy-N-desmethyltamoxifen as a metabolite of tamoxifen in human bile. Cancer Res 48:2304–2308

    CAS  Google Scholar 

  186. Lien EA et al (1989) Distribution of 4-hydroxy-N-desmethyltamoxifen and other tamoxifen metabolites in human biological fluids during tamoxifen treatment. Cancer Res 49:2175–2183

    CAS  Google Scholar 

  187. Kisanga ER et al (2005) Excretion of hydroxylated metabolites of tamoxifen in human bile and urine. Anticancer Res 25:4487–4492

    CAS  Google Scholar 

  188. Ring A et al (2004) Mechanisms of tamoxifen resistance. Endocr Relat Cancer 11:643–658

    CAS  Google Scholar 

  189. Hoskins J et al (2009) CYP2D6 And tamoxifen: DNA matters in breast cancer. Nat Rev Cancer 9:576–586

    CAS  Google Scholar 

  190. Zhou SF (2009) Polymorphism of human cytochrome P450 2D6 and its clinical significance: part I. Clin Pharmacokinet 48:689–723

    CAS  Google Scholar 

  191. Zhou SF (2009) Polymorphism of human cytochrome P450 2D6 and its clinical significance: part II. Clin Pharmacokinet 48:761–804

    CAS  Google Scholar 

  192. Lim HS et al (2007) Clinical implications of CYP2D6 genotypes predictive of tamoxifen pharmacokinetics in metastatic breast cancer. J Clin Oncol 25:3837–3845

    CAS  Google Scholar 

  193. Gjerde J et al (2008) Effects of CYP2D6 and SULT1A1 genotypes including SULT1A1 gene copy number on tamoxifen metabolism. Ann Oncol 19:56–61

    CAS  Google Scholar 

  194. Xu Y et al (2008) Association between CYP2D6 *10 genotype and survival of breast cancer patients receiving tamoxifen treatment. Ann of Oncol Off J Eur Soc Med Oncol/ESMO 19:1423–1429

    CAS  Google Scholar 

  195. Kiyotani K et al (2010) Significant effect of polymorphisms in CYP2D6 and ABCC2 on clinical outcomes of adjuvant tamoxifen therapy for breast cancer patients. J Clin Oncol 28:1287–1293

    CAS  Google Scholar 

  196. Murdter TE et al (2011) Activity levels of tamoxifen metabolites at the estrogen receptor and the impact of genetic polymorphisms of phase I and II enzymes on their concentration levels in plasma. Clin Pharmacol Ther 89:708–717

    CAS  Google Scholar 

  197. Goetz MP et al (2005) Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol 23:9312–9318

    CAS  Google Scholar 

  198. Goetz MP et al (2007) The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast Cancer Res Treat 101:113–121

    CAS  Google Scholar 

  199. Schroth W et al (2007) Breast cancer treatment outcome with adjuvant tamoxifen relative to patient CYP2D6 and CYP2C19 genotypes. J Clin Oncol 25:5187–5193

    CAS  Google Scholar 

  200. Kiyotani K et al (2008) Impact of CYP2D6*10 on recurrence-free survival in breast cancer patients receiving adjuvant tamoxifen therapy. Cancer Sci 99:995–999

    CAS  Google Scholar 

  201. Newman WG et al (2008) Impaired tamoxifen metabolism reduces survival in familial breast cancer patients. Clin Cancer Res 14:5913–5918

    CAS  Google Scholar 

  202. Schroth W et al (2009) Association between CYP2D6 polymorphisms and outcomes among women with early stage breast cancer treated with tamoxifen. JAMA 302:1429–1436

    CAS  Google Scholar 

  203. Bijl MJ et al (2009) The CYP2D6*4 polymorphism affects breast cancer survival in tamoxifen users. Breast Cancer Res Treat 118:125–130

    CAS  Google Scholar 

  204. Ramon y Cajal T et al (2010) Impact of CYP2D6 polymorphisms in tamoxifen adjuvant breast cancer treatment. Breast Cancer Res Treat 119:33–38

    CAS  Google Scholar 

  205. Serrano D et al (2011) Efficacy of tamoxifen based on cytochrome P450 2D6, CYP2C19 and SULT1A1 genotype in the Italian tamoxifen prevention trial. Pharmacogenomics J 11:100–107

    CAS  Google Scholar 

  206. Nowell S et al (2005) Association of genetic variation in tamoxifen-metabolizing enzymes with overall survival and recurrence of disease in breast cancer patients. Breast Cancer Res Treat 91:249–258

    CAS  Google Scholar 

  207. Wegman P et al (2005) Genotype of metabolic enzymes and the benefit of tamoxifen in postmenopausal breast cancer patients. Breast Cancer Res 7:R284–R290

    CAS  Google Scholar 

  208. Wegman P et al (2007) Genetic variants of CYP3A5, CYP2D6, SULT1A1, UGT2B15 and tamoxifen response in postmenopausal patients with breast cancer. Breast Cancer Res 9:R7

    Google Scholar 

  209. Okishiro M et al (2009) Genetic polymorphisms of CYP2D6 10 and CYP2C19 2, 3 are not associated with prognosis, endometrial thickness, or bone mineral density in Japanese breast cancer patients treated with adjuvant tamoxifen. Cancer 115:952–961

    CAS  Google Scholar 

  210. Lash T et al (2009) Genotype-guided tamoxifen therapy: time to pause for reflection? Lancet Oncol 10:825–833

    CAS  Google Scholar 

  211. Nowell S et al (2002) Association between sulfotransferase 1A1 genotype and survival of breast cancer patients receiving tamoxifen therapy. J Natl Cancer Inst 94:1635–1640

    CAS  Google Scholar 

  212. Teft WA et al (2011) Endoxifen, the active metabolite of tamoxifen, is a substrate of the efflux transporter P-glycoprotein (multidrug resistance 1). Drug Metab Dispos 39:558–562

    CAS  Google Scholar 

  213. Iusuf D et al (2011) P-glycoprotein (ABCB1) transports the primary active tamoxifen metabolites endoxifen and 4-hydroxytamoxifen and restricts their brain penetration. J Pharmacol Exp Ther 337:710–717

    CAS  Google Scholar 

  214. Kiyotani K et al (2012) Pharmacogenomics of tamoxifen: roles of drug metabolizing enzymes and transporters. Drug Metab Pharmacokinet 27(1):122–131

    CAS  Google Scholar 

  215. Partridge AH et al (2003) Nonadherence to adjuvant tamoxifen therapy in women with primary breast cancer. J Clin Oncol 21:602–606

    CAS  Google Scholar 

  216. McCowan C et al (2008) Cohort study examining tamoxifen adherence and its relationship to mortality in women with breast cancer. Br J Cancer 99:1763–1768

    CAS  Google Scholar 

  217. Dezentje VO et al (2010) Effect of concomitant CYP2D6 inhibitor use and tamoxifen adherence on breast cancer recurrence in early-stage breast cancer. J Clin Oncol 28:2423–2429

    CAS  Google Scholar 

  218. Beer B et al (2010) Development and validation of a liquid chromatography-tandem mass spectrometry method for the simultaneous quantification of tamoxifen, anastrozole, and letrozole in human plasma and its application to a clinical study. Anal Bioanal Chem 398:1791–1800

    CAS  Google Scholar 

  219. Hershman DL et al (2010) Early discontinuation and nonadherence to adjuvant hormonal therapy in a cohort of 8,769 early-stage breast cancer patients. J Clin Oncol 28:4120–4128

    Google Scholar 

  220. Hershman DL et al (2011) Early discontinuation and non-adherence to adjuvant hormonal therapy are associated with increased mortality in women with breast cancer. Breast Cancer Res Treat 126:529–537

    CAS  Google Scholar 

  221. Kelly C et al (2010) Selective serotonin reuptake inhibitors and breast cancer mortality in women receiving tamoxifen: a population based cohort study. BMJ 340:c693

    Google Scholar 

  222. Lammers LA et al (2010) The impact of CYP2D6-predicted phenotype on tamoxifen treatment outcome in patients with metastatic breast cancer. Br J Cancer 103:765–771

    CAS  Google Scholar 

  223. Ahern TP et al (2009) No increase in breast cancer recurrence with concurrent use of tamoxifen and some CYP2D6-inhibiting medications. Cancer Epidemiol Biomarkers Prev 18:2562–2564

    CAS  Google Scholar 

  224. Cronin-Fenton D et al (2010) Selective serotonin reuptake inhibitors and adjuvant tamoxifen therapy: risk of breast cancer recurrence and mortality. Future Oncol 6:877–880

    CAS  Google Scholar 

  225. Lash T et al (2010) Breast cancer recurrence risk related to concurrent use of SSRI antidepressants and tamoxifen. Acta Oncol 49(3):305–312

    CAS  Google Scholar 

  226. Irvin WJ Jr et al (2011) Genotype-guided tamoxifen dosing increases active metabolite exposure in women with reduced CYP2D6 metabolism: a multicenter study. J Clin Oncol 29:3232–3239

    CAS  Google Scholar 

  227. Kiyotani K et al (2012) Dose-adjustment study of tamoxifen based on CYP2D6 genotypes in Japanese breast cancer patients. Breast Cancer Res Treat 131(1):137–145

    CAS  Google Scholar 

  228. Barginear MF et al (2011) Increasing tamoxifen dose in breast cancer patients based on CYP2D6 genotypes and endoxifen levels: effect on active metabolite isomers and the antiestrogenic activity score. Clin Pharmacol Ther 90:605–611

    CAS  Google Scholar 

  229. Lien EA et al (1987) Determination of tamoxifen and four metabolites in serum by low-dispersion liquid chromatography. Clin Chem 33:1608–1614

    CAS  Google Scholar 

  230. Lee KH et al (2003) Quantification of tamoxifen and three metabolites in plasma by high-performance liquid chromatography with fluorescence detection: application to a clinical trial. J Chromatogr B Analyt Technol Biomed Life Sci 791:245–253

    CAS  Google Scholar 

  231. Zhu YB et al (2008) Optimizing high-performance liquid chromatography method with fluorescence detection for quantification of tamoxifen and two metabolites in human plasma: application to a clinical study. J Pharm Biomed Anal 46:349–355

    CAS  Google Scholar 

  232. Esteve-Romero J et al (2010) Tamoxifen monitoring studies in breast cancer patients by micellar liquid chromatography. Anal Bioanal Chem 397:1557–1561

    CAS  Google Scholar 

  233. Carter SJ et al (2001) Biomonitoring of urinary tamoxifen and its metabolites from breast cancer patients using nonaqueous capillary electrophoresis with electrospray mass spectrometry. Electrophoresis 22:2730–2736

    CAS  Google Scholar 

  234. Mihailescu R et al (2000) Identification of tamoxifen and metabolites in human male urine by GC/MS. Biomed Chromatogr 14:180–183

    CAS  Google Scholar 

  235. Zweigenbaum J et al (2000) Bioanalytical high-throughput selected reaction monitoring-LC/MS determination of selected estrogen receptor modulators in human plasma: 2000 samples/day. Anal Chem 72:2446–2454

    CAS  Google Scholar 

  236. Sheth HR et al (2003) Aging may be associated with concentrations of tamoxifen and its metabolites in breast cancer patients. J Womens Health 12:799–808

    Google Scholar 

  237. Tucker AN et al (2005) Polymorphisms in cytochrome P4503A5 (CYP3A5) may be associated with race and tumor characteristics, but not metabolism and side effects of tamoxifen in breast cancer patients. Cancer Lett 217:61–72

    CAS  Google Scholar 

  238. Gjerde J et al (2005) Identification and quantification of tamoxifen and four metabolites in serum by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1082:6–14

    CAS  Google Scholar 

  239. Williams LD et al (2006) Quantification of tamoxifen and metabolites and soy isoflavones in human plasma using liquid chromatography with electrospray ionization tandem mass spectrometry. J AOAC Int 89:1168–1173

    CAS  Google Scholar 

  240. Wu AH et al (2007) Tamoxifen, soy, and lifestyle factors in Asian American women with breast cancer. J Clin Oncol 25:3024–3030

    CAS  Google Scholar 

  241. Furlanut M et al (2007) Tamoxifen and its main metabolites serum and tissue concentrations in breast cancer women. Ther Drug Monit 29:349–352

    CAS  Google Scholar 

  242. Teunissen SF et al (2009) Development and validation of a quantitative assay for the analysis of tamoxifen with its four main metabolites and the flavonoids daidzein, genistein and glycitein in human serum using liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 877:2519–2529

    CAS  Google Scholar 

  243. Ahmad A et al (2010) Orally administered endoxifen is a new therapeutic agent for breast cancer. Breast Cancer Res Treat 122:579–584

    CAS  Google Scholar 

  244. Ahmad A et al (2010) Endoxifen, a new cornerstone of breast cancer therapy: demonstration of safety, tolerability, and systemic bioavailability in healthy human subjects. Clin Pharmacol Ther 88:814–817

    CAS  Google Scholar 

  245. Jaremko M et al (2010) Tamoxifen metabolite isomer separation and quantification by liquid chromatography-tandem mass spectrometry. Anal Chem 82:10186–10193

    CAS  Google Scholar 

  246. Teunissen SF et al (2011) Development and validation of a quantitative assay for the determination of tamoxifen and its five main phase I metabolites in human serum using liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 879:1677–1685

    CAS  Google Scholar 

  247. Binkhorst L et al (2011) Quantification of tamoxifen and three of its phase-I metabolites in human plasma by liquid chromatography/triple-quadrupole mass spectrometry. J Pharm Biomed Anal 56:1016–1023

    CAS  Google Scholar 

  248. Poon GK et al (1993) Analysis of phase I and phase II metabolites of tamoxifen in breast cancer patients. Drug Metab Dispos 21:1119–1124

    CAS  Google Scholar 

  249. Poon GK et al (1995) Identification of tamoxifen metabolites in human Hep G2 cell line, human liver homogenate, and patients on long-term therapy for breast cancer. Drug Metab Dispos 23:377–382

    CAS  Google Scholar 

  250. Jones RM et al (1996) On-line high-performance liquid chromatographic-electrospray ionization mass spectrometric method for the study of tamoxifen metabolism. J Chromatogr A 722:249–255

    CAS  Google Scholar 

  251. Lim CK et al (1997) Identification and mechanism of formation of potentially genotoxic metabolites of tamoxifen: study by LC-MS/MS. J Pharm Biomed Anal 15:1335–1342

    CAS  Google Scholar 

  252. Boocock DJ et al (2002) Identification of human CYP forms involved in the activation of tamoxifen and irreversible binding to DNA. Carcinogenesis 23:1897–1901

    CAS  Google Scholar 

  253. Mazzarino M et al (2008) A mass spectrometric approach for the study of the metabolism of clomiphene, tamoxifen and toremifene by liquid chromatography time-of-flight spectroscopy. Eur J Mass Spectrom 14:171–180

    CAS  Google Scholar 

  254. Mazzarino M et al (2010) Mass spectrometric characterization of tamoxifene metabolites in human urine utilizing different scan parameters on liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 24:749–760

    CAS  Google Scholar 

  255. Teunissen SF et al (2010) Bioanalytical methods for determination of tamoxifen and its phase I metabolites: a review. Anal Chim Acta 683:21–37

    CAS  Google Scholar 

  256. Matuszewski BK et al (2003) Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem 75:3019–3030

    CAS  Google Scholar 

  257. Matuszewski BK (2006) Standard line slopes as a measure of a relative matrix effect in quantitative HPLC-MS bioanalysis. J Chromatogr B Analyt Technol Biomed Life Sci 830:293–300

    CAS  Google Scholar 

  258. Lindegardh N et al (2008) Development and validation of a liquid chromatographic-tandem mass spectrometric method for determination of piperaquine in plasma stable isotope labeled internal standard does not always compensate for matrix effects. J Chromatogr B Analyt Technol Biomed Life Sci 862:227–236

    CAS  Google Scholar 

  259. Bonfiglio R et al (1999) The effects of sample preparation methods on the variability of the electrospray ionization response for model drug compounds. Rapid Commun Mass Spectrom 13:1175–1185

    CAS  Google Scholar 

  260. Viswanathan CT et al (2007) Quantitative bioanalytical methods validation and implementation: best practices for chromatographic and ligand binding assays. Pharm Res 24:1962–1973

    CAS  Google Scholar 

  261. Polson C et al (2003) Optimization of protein precipitation based upon effectiveness of protein removal and ionization effect in liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 785:263–275

    CAS  Google Scholar 

  262. Souverain S et al (2004) Protein precipitation for the analysis of a drug cocktail in plasma by LC-ESI-MS. J Pharm Biomed Anal 35:913–920

    CAS  Google Scholar 

  263. Ismaiel OA et al (2010) Investigation of endogenous blood plasma phospholipids, cholesterol and glycerides that contribute to matrix effects in bioanalysis by liquid chromatography/mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 878:3303–3316

    CAS  Google Scholar 

  264. Van Eeckhaut A et al (2009) Validation of bioanalytical LC-MS/MS assays: evaluation of matrix effects. J Chromatogr B Analyt Technol Biomed Life Sci 877:2198–2207

    Google Scholar 

  265. Hewavitharana AK (2011) Matrix matching in liquid chromatography-mass spectrometry with stable isotope labelled internal standards–is it necessary? J Chromatogr A 1218:359–361

    CAS  Google Scholar 

  266. Imatinib Concentration Monitoring Evaluation (I-COME). http://www.controlled-trials.com/ISRCTN31181395

  267. European Treatment and Outcome Study (EUTOS). http://www.eutos.org

  268. ASQUALAB, Paris, France. http://www.asqualab.com/

  269. Guiducci C et al. ISyPeM: Intelligent Integrated Systems for Personalised Medicine. http://www.nano-tera.ch/projects/405.php

Download references

Acknowledgments

This chapter has been realized within the frame of the research project “Integrative cellular pharmacokinetics/pharmacodynamics/pharmacoproteomics studies of anticancer TKIs in leukemia” (SNF grant no. 310030_138097/1 to LAD) supported by the Swiss National Science Foundation (SNF, Switzerland). It also benefited from the support of the SNF-funded initiative Nano-Tera (ISyPeM project [269] to TB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Decosterd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Decosterd, L. et al. (2012). Therapeutic Drug Monitoring of Targeted Anticancer Therapy. Tyrosine Kinase Inhibitors and Selective Estrogen Receptor Modulators: A Clinical Pharmacology Laboratory Perspective. In: Xu, Q., Madden, T. (eds) LC-MS in Drug Bioanalysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3828-1_9

Download citation

Publish with us

Policies and ethics