Advertisement

Therapeutic Drug Monitoring to Support Clinical Pharmacogenomics

  • Alan H. B. WuEmail author
  • Kara L. Lynch
Chapter

Abstract

The implementation of pharmacogenomics can improve the efficacy of therapeutic drugs while reducing the incidence of side effects and drug toxicity. Therapeutic drug monitoring is well accepted and widely practiced for many drugs and is also relevant for drugs for which pharmacogenomic testing is needed. Tamoxefin is metabolized by CYP 2D6 to endoxifen, clopidogrel by CYP 2C19 to thiol-containing active metabolite, and opioid drugs by 2D6 to morphine and other metabolites. For these drugs, genetic testing can be used to predict efficacy for breast cancer outcomes, freedom from cardiovascular events, and adequate pain control, respectively. Therapeutic drug monitoring (TDM) can be used to determine drug compliance, especially for the opioids which have street value and can be diverted as a drug of abuse. Drug levels can be used to titrate drug dosage for individuals who are shown to be sub-therapeutic. TDM can also improve efficacy for tamoxifen for patients taking drug inhibitors, and be useful for determining the mechanism of clopidogrel resistance (i.e., pharmacokinetics vs. pharmacodynamics). Since there are no specific immunoassays for these drugs and metabolites for serum measurements, liquid chromatography/mass spectrometric methods will be necessary to implement TDM.

Keywords

Therapeutic Drug Monitoring Stent Thrombosis Clopidogrel Resistance Morphine Formation Nongenetic Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Jin Y, Desta Z, Stearns V, Ward B, Ho H, Lee KH, Skaar T, Storniolo AM, Li L, Araba A, Blanchard R, Nguyen A, Ullmer L, Hayden J, Lemler S, Weinshilboum RM, Rae JM, Hayes DF, Flockhart DA (2005) CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst 97:30–39CrossRefGoogle Scholar
  2. 2.
    Goetz MP, Rae JM, Suman VJ, Safgren SL, Ames MM, Visscher DW, Reynolds C, Couch FJ, Lingle WL, Flockhart DA, Desta Z, Perez EA, Ingle JN (2005) Pharmacogenetics of tamoxifen biotransformation is associated with clinical outcomes of efficacy and hot flashes. J Clin Oncol 23:9312–9318CrossRefGoogle Scholar
  3. 3.
    Goetz MP, Knox SK, Suman VJ, Rae JM, Safgren SL, Ames MM, Visscher DW, Reynods C, Couch FJ, Lingle WL, Weinshilboum RM, Barr Fritcher EG, Barr Fritcher AM, Desta Z, Nguyen A, Flockhart DA, Perez EA, Ingle JN (2006) The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant tamoxifen. Breast Cancer Res Treat 101:113–121CrossRefGoogle Scholar
  4. 4.
    Lim HS, Lee HJ, Lee KS, Lee ES, Jang IJ, Ro J (2007) Clinical implications of CYP2D6 genotypes predictive of tamoxifen pharmacokinetics in metastatic breast cancer. J Clin Oncol 25:3837–3845CrossRefGoogle Scholar
  5. 5.
    Madlensky L, Natarajan L, Tchu S, Pu M, Mortimer J, Flatt SW, Parker BA, Wu AHB, Pierce JP (2010) Tamoxifen metabolite concentrations, CYP2D6 genotype and breast cancer outcomes. J Clin Oncol 89(5):718–725Google Scholar
  6. 6.
    Sterns V, Johnson MD, Rae JM, Morocho A, Novielli A, Bhargava P, Hayes DF, Desta Z, Flockhart DA (2003) Active tamoxifen metabolite plasma concentrations after coadministration of tamoxifen and the selective serotonin reuptake inhibitor paroxetine. J Natl Cancer Inst 95:1758–1764CrossRefGoogle Scholar
  7. 7.
    Borges S, Desta Z, Li L, Skaar TC, Ward BA, Nguyen A, Jin Y, Storniolo AM, Nikoloff DM, Wu L, Hillman G, Hayes DF, Stearns V, Flockhart DA (2006) Quantitative effect of CYP2D6 genotype and inhibitors on tamoxifen metabolism: implication for optimization of breast cancer treatment. Clin Pharmacol Ther 80:61–74CrossRefGoogle Scholar
  8. 8.
    Kelly CM, Juurlink DN, Gomes T, Duong-Hua M, Pritchard KI, Austin PC, Faszat LF (2010) Selective serotonin reuptake inhibitors and breast cancer mortality in women receiving tamoxifen: a population based cohort study. BMJ 340:c693CrossRefGoogle Scholar
  9. 9.
    Wu AH, Pike MC, Williams LD, Spicer D, Tseng CC, Churchwell MI, Doerge DR (2007) Tamoxifen, soy, and lifestyle factors in Asian American women with breast cancer. J Clin Oncol 25:3024–3030CrossRefGoogle Scholar
  10. 10.
    Lee KH, Ward BA, Desta Z, Flockhart DA (2003) Jones DR (2003) Quantification of tamoxifen and three metaoblites in plasma by high-performance liquid chromatography with fluorescence detection: application to a clinical trial. J Chromatogr B 791:245–253CrossRefGoogle Scholar
  11. 11.
    Furlanut M, Franceschi L, Pasqual E, Bacchetti S, Poz D, Giorda G, Cagol PP (2007) Tamoxifen and its main metabolites serum and tissue concentration in breast cancer women. Ther Drug Monit 29:349–352CrossRefGoogle Scholar
  12. 12.
    Gjerde J, Kisanga ER, Hauglid M, Holm PI, Mellgren G, Lien EA (2005) Identification and quantification of tamoxifen and four metabolites in serum by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1082:6–14CrossRefGoogle Scholar
  13. 13.
    National Cancer Institute. Studying blood samples from women with breast cancer or ductal carcinoma in situ who are receiving tamoxifen. NCT00764322. http://www.clinicaltrials.gov/ct2/show/NCT00764322?term=tamoxifen+pharmacogenomics+and+university+of+north+carolina&rank=1
  14. 14.
    ACC/AHA/SCAI 2005 (2006) Guideline Update for Percutaneous Coronary Intervention—Summary Article. A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI Writing Committee to Update the 2001 Guidelines for Percutaneous Coronary Intervention). Circulation 113:156–175Google Scholar
  15. 15.
    Brandt JT, Close SL, Iturria SJ, Payne CD, Farid NA, Ernest CS, Lachno DR, Salazar D, Winters KJ (2007) Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. J Thromb Haemost 5:2429–2436CrossRefGoogle Scholar
  16. 16.
    Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, Walker JR, Antman EM, Macias W, Braunwald E, Sabatine MS (2009) Cytochrome P-450 polymorphisms and response to clopidogrel. N Engl J Med 360:354–362CrossRefGoogle Scholar
  17. 17.
    Collet JP, Hulot JS, Pena A, Villard E, Esteve JB, Silvain J, Payot L, Brugier D, Cayla G, Beygui F, Bensimon G, Funck-Bretano C, Montalescot G (2009) Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study. Lancet 373:309–317CrossRefGoogle Scholar
  18. 18.
    Giusti B, Gori AM, Marcucci R, Saracini C, Il S, Paniccia R, Buonamici P, Antoniucci D, Abbate R, Gensi GF (2009) Relation of cytochrome P450 2C19 loss-of-function polymorphism to occurrence of drug-eluting coronary stent thrombosis. Am J Cardiol 103:806–811CrossRefGoogle Scholar
  19. 19.
    FDA Drug Safety Communication: reduced effectiveness of Plavix (clopidogrel) in patients who are poor metabolizers of the drug. http://www.fda.gov/Drugs/DrugSafety/PostmarketDrugSafetyInformationforPatiensandProviders/ucm203888.htm
  20. 20.
    Holmes DR, Dehmer GJ, Kaul S, Leifer D (2010) ACCF/AHA clopidogrel clinical alert: approaches to the FDA “Boxed Warning”. J Am Coll Cardiol 56:321–341CrossRefGoogle Scholar
  21. 21.
    Price MJ, Berger PB, Angiolillo DJ, Teirstein PS, Tanquay JF, Kandzari DE, Cannon CP, Topol EJ (2009) Evaluation of individualized clopidogrel therapy after drug-eluting stent implantation in patients with high residual platelet reactivity: design and rationale of the GRAVITAS trial. Am Heart J 157:818–824CrossRefGoogle Scholar
  22. 22.
    Sibbing D, Koch W, Gebhard D, Schuster T, Braun S, Stegherr J, Morath T, Schomig A, von Beckerath N, Kastrati A (2010) Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation 121:512–518CrossRefGoogle Scholar
  23. 23.
    Bouman HJ, Parlak E, Van Werkum JWV, Breet NJ, Ten Cate H, Hackeng CM, Ten Berg JM, Taubert D (2009) Which platelet function test is suitable to monitor clopidogrel responsiveness? A pharmacokinetic analysis on the active metabolite of clopidogrel. J Thromb Haemost 8:482–488CrossRefGoogle Scholar
  24. 24.
    Wiviott SD, Antman EM (2004) Clopidogrel resistance. A new chapter in a fast-moving story. Circulation 109:3064–3067CrossRefGoogle Scholar
  25. 25.
    Ksycinska H, Rudzki P, Bukowska-Kiliszek M (2006) Determination of clopidogrel metabolite (SR26334) in human plasma by LC-MS. J Pharm Biomed Anal 41:533–539CrossRefGoogle Scholar
  26. 26.
    Shi BS, Yoo SD (2007) Determination of clopidogrel in human plasma by liquid chromatography/tandem mass spectrometry: application to a clinical pharmacokinetic study. Biomed Chromatogr 21:883–889CrossRefGoogle Scholar
  27. 27.
    Takahashi M, Pang H, Kawabata K, Farid NA, Kurihara A (2008) Quantitative determination of clopidogrel active metabolite in human plasma by LC-MS/MS. J Pharm Biomed Anal 48:1219–1224CrossRefGoogle Scholar
  28. 28.
    Bonello L, Camoin-Jau L, Arques S, Boyer C, Panagides D, Wittenberg O, Simeoni MC, Barragan P, Dignat-George F, Paganelli F (2008) Adjusted clopidogrel loading dosese according to vasodilator-stimulated phosphoprotein phosphorylation index decrease rate of major adverse cardiovascular events in patients with clopidogrel resistance. J Am Coll Cardiol 51:1404–1411CrossRefGoogle Scholar
  29. 29.
    Daly AK, Brockmoller J, Broly F, Eichelbaum M, Evans WE, Gonzalez FJ, Huang JD, Idle JR, Ingelman-Sundberg M, Ishizaki T, Jacqz-Aigrain E, Meyer UA, Nebert DW, Steen VM, Wolf CR, Zanger UM (1996) Nomenclature for human CYP2D6 alleles. Pharmacogenetics 6(3):193–201CrossRefGoogle Scholar
  30. 30.
    Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C (2007) Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 116(3):496–526CrossRefGoogle Scholar
  31. 31.
    Coffman BL, Rios GR, King CD, Tephly TR (1997) Human UGT2B7 catalyzes morphine glucuronidation. Drug Metab Dispos 25:1–4Google Scholar
  32. 32.
    Williams DG, Patel A, Howard RF (2001) Pharmacogenetics of codeine metabolism in an urban population of children and its implications for analgesic reliability. Br J Anaesth 86(3):413–421CrossRefGoogle Scholar
  33. 33.
    Kirchheiner J, Schmidt H, Tzvetkov M, Keulen J (2007) LotschJ, Roots I, Brockmoller J. Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharmacogenomics J 7(4):257–265CrossRefGoogle Scholar
  34. 34.
    Lotsch J, Rohrbacher M, Schmidt H, Doehring A, Brockmoller J, Geisslinger G (2009) Can extremely low or high morphine formation from codeine be predicted prior to therapy initiation? Pain 144:119–124CrossRefGoogle Scholar
  35. 35.
    He YJ, Brockmoller J, Schmidt H, Roots I, Kirchheiner J (2008) CYP2D6 ultrarapid metabolism and morphine/codeine ratios in blood: was it codeine or heroin? J Anal Toxicol 32:178–182Google Scholar
  36. 36.
    Gasche Y, Daali Y, Fathi M, Chiappe A, Cottini S, Dayer P, Desmeules J (2004) Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N Engl J Med 351(27):1356–1358CrossRefGoogle Scholar
  37. 37.
    Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder SJ (2006) Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet 368(9536):704CrossRefGoogle Scholar
  38. 38.
    Ciszkowski C, Madadi P, Phillips MS, Lauwers AE, Koren G (2009) Codeine, ultrarapid-metabolism genotype, and postoperative death. N Engl J Med 361(8):827–828CrossRefGoogle Scholar
  39. 39.
    Voronov P, Przybylo HJ, Jagannathan N (2007) Apnea in a child after oral codeine: a genetic variant – an ultra-rapid metabolizer. Paediatr Anaesth 17(7):684–687CrossRefGoogle Scholar
  40. 40.
    Madadi P, Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder JS, Teitelbaum R, Karaskov T, Aleksa K (2007) Safety of codeine during breastfeeding: fatal morphine poisoning in the breastfed neonate of a mother prescribed codeine. Can Fam Physician 53(1):33–35Google Scholar
  41. 41.
    Court MH, Krishnaswamy S, Hao Q, Duan SX, Patten CJ, Von Moltke LL, Greenblatt DJ (2003) Evaluation of 3′-azido-3′-deoxythymidine, morphine, and codeine as probe substrates for UDP-glucuronosyltransferase 2B7 (UGT2B7) in human liver microsomes: specificity and influence of the UGT2B7*2 polymorphism. Drug Metab Dispos 31:1125–1133CrossRefGoogle Scholar
  42. 42.
    Bhasker CR, McKinnon W, Stone A, Lo AC, Kubota T, Ishizaki T, Miners JO (2000) Genetic polymorphism of UDP-glucuronosyltransferase 2B7 (UGT2B7) at amino acid 268; ethnic diversity of alleles and potential clinical significance. Pharmacogenetics 10:679–685CrossRefGoogle Scholar
  43. 43.
    Innocenti F, Lui W, Frackenthal D, Ramirez J, Chen P, Ye X, Wu X, Zhang W, Mirkov S, Das S, Cook E Jr, Ratain MJ (2008) Single nucleotide polymorphism discovery and functional assessment of variation in the UDP-glucuronosyltransferase 2B7 gene. Pharmacogenet Genomics 18:683–697CrossRefGoogle Scholar
  44. 44.
    Lotsch J, Skarke C, Liefhold J, Geisslinger G (2004) Genetic predictors of the clinical response to opioid analgesics. Clin Pharmacokinet 43(14):983–1013CrossRefGoogle Scholar
  45. 45.
    Lötsch J, von Hentig N, Freynhagen R, Griessinger N, Zimmermann M, Doehring A, Rohrbacher M, Sittl R, Geisslinger G (2009) Cross-sectional analysis of the influence of currently known pharmacogenetic modulators on opioid therapy in outpatient pain centers. Pharmacogenet Genomics 19(6):429–436CrossRefGoogle Scholar
  46. 46.
    Campa D, Gioia A, Tomei A, Poli P, Barale R (2008) Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief. Clin Pharmacol Ther 83(4):559–566CrossRefGoogle Scholar
  47. 47.
    Coulbault L, Beaussier M, Verstuyft C, Weickmans H, Dubert L, Trégouet D, Descot C, Parc Y, Lienhart A, Jaillon P, Becquemont L (2006) Environmental and genetic factors associated with morphine response in the postoperative period. Clin Pharmacol Ther 79(4):316–324CrossRefGoogle Scholar
  48. 48.
    Coles R, Kushnir MM, Nelson GJ, McMillin GA, Urry FM (2007) Simultaneous determination of codeine, morphine, hydrocodone, hydromorphone, oxycodone, and 6-acetylmorphine in urine, serum, plasma, whole blood, and meconium by LC-MS-MS. J Anal Toxicol 31(1):1–14Google Scholar
  49. 49.
    Bogusz MJ, Maier RD, Erkens M, Driessen S (1997) Determination of morphine and its 3- and 6-glucuronides, codeine, codeine-glucuronide and 6-monoacetylmorphine in body fluids by liquid chromatography atmospheric pressure chemical ionization mass spectrometry. J Chromatogr B Biomed Sci Appl 703(1–2):115–127CrossRefGoogle Scholar
  50. 50.
    Schänzle G, Li S, Mikus G, Hofmann U (1999) Rapid, highly sensitive method for the determination of morphine and its metabolites in body fluids by liquid chromatography-mass spectrometry. J Chromatogr B Biomed Sci Appl 721(1):55–65CrossRefGoogle Scholar
  51. 51.
    Al-Asmari AI, Anderson RA (2007) Method for quantification of opioids and their metabolites in autopsy blood by liquid chromatography-tandem mass spectrometry. J Anal Toxicol 31(7):394–408Google Scholar
  52. 52.
    Dahn T, Gunn J, Kriger S, Terrell AR (2010) Quantitation of morphine, codeine, hydrocodone, hydromorphone, oxycodone, oxymorphone, and 6-monoacetylmorphine (6-MAM) in urine, blood, serum, or plasma using liquid chromatography with tandem mass spectrometry detection. Methods Mol Biol 603:411–422CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Laboratory MedicineUniversity of California-San FranciscoSan FranciscoUSA
  2. 2.San Francisco General HospitalSan FranciscoUSA

Personalised recommendations