Highly Sensitive Pharmaceutical and Clinical Analysis Using Selective Solid-Phase Extraction Coupled to Microflow Liquid Chromatography and Isotope-Dilution Mass Spectrometry

Chapter

Abstract

The capacity of ultrasensitive quantification is highly desirable in many clinical and pharmaceutical applications, such as the PK study of low-dose administration and quantification of low-abundance markers in circulating systems. Nonetheless, this task is highly challenging even for a LC-MS/MS approach, due to the extremely low levels of analytes and the highly complex matrices. Here we describe a robust method for the ultrasensitive quantification of therapeutic agents or clinical markers in highly complex biological systems. This is achieved by the combination of a selective solid-phase extraction (SPE) with a highly sensitive capillary LC (μLC)-MS/MS analysis. Comparing to a conventional LC-MS/MS, a μLC-MS/MS provides much higher sensitivity due to the lower peak dilution. SPE washing and elution conditions were optimized so that target drugs are selectively extracted from the biological matrix. By eliminating most undesirable matrix components, this selective SPE procedure enabled a high sample loading volume on the μLC column without compromising chromatographic performance and operational robustness, and helped to achieve ultralow detection limits. Sufficient μLC separation was employed in order to further improve analytical sensitivity and to decrease matrix effects. To show the application of this strategy, three paradigms, respectively, the quantifications of (1) corticosteroids after an intravitreous injection, (2) an anticancer agent after a low-dose treatment, and (3) several vitamin D (VitD) metabolites in plasma, are introduced in this chapter. Typically, low pg/mL LOQ were achieved, and the linearity, accuracy, and precision of these developed methods were excellent.

Collectively, this strategy enables the ultrasensitive, accurate, and robust LC-MS-based quantification of extremely low levels of drug/markers in biological samples, which were previously approachable only by ELISA or RIA methods.

Keywords

Porosity HPLC Osteoporosis Corticosteroid Acetonitrile 

References

  1. 1.
    Vissers JPC, Claessens HA, Cramers CA (1997) J Chromatogr A 779:1–28CrossRefGoogle Scholar
  2. 2.
    Wilm M, Shevchenko A, Houthaeve T, Breit S, Schweigerer L, Fotsis T, Mann M (1996) Nature 379:466–469CrossRefGoogle Scholar
  3. 3.
    Emmett MR, Caprioli RM (1994) J Am Soc Mass Spectrom 5:605–613CrossRefGoogle Scholar
  4. 4.
    Qu J, Qu Y, Straubinger RM (2007) Anal Chem 79:3786–3793CrossRefGoogle Scholar
  5. 5.
    Yu HY, Straubinger RM, Cao J, Wang H, Qu J (2008) J Chromatogr A 1210:160–167CrossRefGoogle Scholar
  6. 6.
    Duan XT, Weinstock-Guttman B, Wang H, Bang EJ, Li J, Ramanathan M, Qu J (2010) Anal Chem 82:2488–2497CrossRefGoogle Scholar
  7. 7.
    Qu J, Wang YM, Luo GA (2001) J Chromatogr A 919:437–441CrossRefGoogle Scholar
  8. 8.
    Olsen TW, Feng X, Warner K, Conston SR, Sierra DH, Folden DV, Smith ME, Cameron JD (2006) Am J Ophthalmol 142:777–787CrossRefGoogle Scholar
  9. 9.
    Beer PM, Bakri SJ, Singh RJ, Liu WG, Peters GB, Miller M (2003) Ophthalmology 110:681–686CrossRefGoogle Scholar
  10. 10.
    Alexander MS, Kiser MM, Culley T, Kern JR, Dolan JW, McChesney JD, Zygmunt J, Bannister SJ (2003) J Chromatogr B 785:253–261CrossRefGoogle Scholar
  11. 11.
    Kumar GN, Walle UK, Bhalla KN, Walle T (1993) Res Commun Chem Pathol 80:337–344Google Scholar
  12. 12.
    Kuh HJ, Jang SH, Wientjes MG, Au JLS (2000) J Pharmacol Exp Ther 293:761–770Google Scholar
  13. 13.
    Gaspar JR, Qu J, Straubinger NL, Straubinger RM (2008) Analyst 133:1742–1748CrossRefGoogle Scholar
  14. 14.
    Saito Y, Jinno K, Greibrokk T (2004) J Sep Sci 27:1379–1390CrossRefGoogle Scholar
  15. 15.
    Stokvis E, Ouwehand M, Nan LGAH, Kemper EM, van Tellingen O, Rosing H, Beijnen JH (2004) J Mass Spectrom 39:1506–1512CrossRefGoogle Scholar
  16. 16.
    Parise RA, Ramanathan RK, Zamboni WC, Egorin MJ (2003) J Chromatogr B 783:231–236CrossRefGoogle Scholar
  17. 17.
    Hou WY, Watters JW, McLeod HL (2004) J Chromatogr B 804:263–267CrossRefGoogle Scholar
  18. 18.
    Grozav AG, Hutson TE, Zhou X, Bukowski RM, Ganapathi R, Xu Y (2004) J Pharm Biomed 36:125–131CrossRefGoogle Scholar
  19. 19.
    Guo W, Johnson JL, Khan S, Ahmad A, Ahmad I (2005) Anal Biochem 336:213–220CrossRefGoogle Scholar
  20. 20.
    Wang LZ, Goh BC, Grigg ME, Lee SC, Khoo YM, Lee HS (2003) Rapid Commun Mass Spectrom 17:1548–1552CrossRefGoogle Scholar
  21. 21.
    Gustafson DL, Long ME, Zirrolli JA, Duncan MW, Holden SN, Pierson AS, Eckhardt SG (2003) Cancer Chemother Pharm 52:159–166CrossRefGoogle Scholar
  22. 22.
    Smolders J, Damoiseaux J, Menheere P, Hupperts R (2008) J Neuroimmunol 194:7–17CrossRefGoogle Scholar
  23. 23.
    Houghton LA, Vieth R (2006) Am J Clin Nutr 84:694–697Google Scholar
  24. 24.
    Zerwekh JE (2008) Am J Clin Nutr 87:1087s–1091sGoogle Scholar
  25. 25.
    Norman AW, Okamura WH, Farachcarson MC, Allewaert K, Branisteanu D, Nemere I, Muralidharan KR, Bouillon R (1993) J Biol Chem 268:13811–13819Google Scholar
  26. 26.
    Seo EG, Norman AW (1997) J Bone Miner Res 12:598–606CrossRefGoogle Scholar
  27. 27.
    Carter GD (2009) Clin Chem 55:1300–1302CrossRefGoogle Scholar
  28. 28.
    Roth HJ, Schmidt-Gayk H, Weber H, Niederau C (2008) Ann Clin Biochem 45:153–159CrossRefGoogle Scholar
  29. 29.
    Haddad JG (1971) J Clin Endocr Metab 33:992–995CrossRefGoogle Scholar
  30. 30.
    Jones G (1978) Clin Chem 24:287–298Google Scholar
  31. 31.
    Khatri BO (2000) Ther Apher Off J Int Soc Apher Jpn Soc Apher 4:263–270Google Scholar
  32. 32.
    Munger KL, Levin LI, Hollis BW, Howard NS, Ascherio A (2006) JAMA 296:2832–2838CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Pharmaceutical SciencesUniversity at Buffalo, State University of New YorkAmherstUSA

Personalised recommendations