A Planar Integrated Micro-mass Spectrometer

  • Jörg MüllerEmail author
  • Grigoriy Quiring
  • Maria Reinhardt-Szyba
  • Régulo Miguel Ramírez Wong
  • Henning Wehrs


A planar fully integrated micro-mass spectrometer fabricated in a full wafer based state-of-the-art MEMS technology in a glass–silicon–glass sandwich is presented. Within a volume of 7 × 10 × 1.3 mm³ it contains all components of a mass spectrometer, i.e., a microwave plasma electron source for ionization, an ionization chamber, the electron and ion extraction, acceleration and focusing electrodes, a new type of mass separator, a Faraday detector as well as structures for the pressure management within the system for analyte, plasma gas, optics, and mass separation. Also a spring arrangement to insert a self-aligning and contacting microchannel plate (MCP) is included. The complete system is transferred from one single photolithographic mask layer into a 2 ½ dimensional structure in a silicon substrate by ICP-etching. The designs of the subsystems, especially that of a new type of separation principle, are presented and the layout of the injection system and the batch processing of the device are outlined. A completely newly developed hardware and software of the electronics to drive the system is presented including its physical layout and operational scheme. Actual spectra obtained with the system demonstrate a mass resolution of 43 in a mass range of 0.5–200 and a sensitivity of <100 ppm. Means to adapt the size of the periphery like vacuum pumps, inlet pressure stages, and handling of liquid analytes, which would allow for a really handheld device, conclude the contribution.


Ionization Chamber Mass Separator Plasma Chamber Glass Wafer Pressure Stage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded and supported by several organizations and scientific as well as industrial partners for more than a decade. A number of PhD students, and many Diploma and Master students worked on this subject. It was funded by the City of Hamburg, the German Research Council (DFG), the European Union as well as the German Ministry of Research and Development; scientific partners were LETI and industrial partners Leda Mass, now part of MKS, Bayer Technology Services, and Krohne Messtechnik. PhD students besides the coauthors were Volker Relling, Ralph Siebert, Gerald Petzold, Jan-Peter Hauschild, and Eric Wapelhorst. Neither the PhD students nor the funders ever lost their confidence that finally we would succeed in realizing such a complex and fully integrated mass spectrometer.

Finally we appreciate the critical reading of the text by Winfred Kuipers.


  1. 1.
    Lehmann U, Krusemark O, Müller J, Vogel A, Binz D (2000) Micro machined gas chromatograph based on a plasma polymerized stationary phase. Kluwer Academic Publishers, EnschedeGoogle Scholar
  2. 2.
    μGC Technology, Elster Instromet, [Online]. Available Accessed 17 Nov 2011
  3. 3.
    Zimmermann S, Krippner P, Müller J (2002) Miniaturized flame ionisation detector for gas chromatography. Sensors and Actuators B: Chemical 83(1–3):285–289CrossRefGoogle Scholar
  4. 4.
    Kuipers W, Müller J (2010) Sensitivity of a planar micro-flame ionization detector. Talanta 82(5):1674–1679CrossRefGoogle Scholar
  5. 5.
    Helbling T, Pohle R, Durrer L (2008) Sensing NO2 with individual suspended single-walled carbon nanotubes. Sensors and Actuators B: Chemical 132(2):491–497CrossRefGoogle Scholar
  6. 6.
    Brucker GA, Rathbone GJ (2010) Autoresonant Trap Mass Spectrometry (ART MS) for remote sensing applications. International Journal of Mass Spectrometry 295:133–137CrossRefGoogle Scholar
  7. 7.
    Tassetti C-M, Duraffoung L, Danel J-S, Lagutére T, Progent F (2011) Poster, Grenoble, France; Arpajon, France: HEMS 2011Google Scholar
  8. 8.
    Wapelhorst E, Hauschild J-P, Müller J (2007) Complex MEMS: a fully integrated TOF micro mass spectrometer. Sensors and Actuators A 138:22–27CrossRefGoogle Scholar
  9. 9.
    Brkic B, France N, Clare AT, Sutcliffe CJ (2009) Development of Quadrupole Mass Spectrometers Using Rapid Prototyping Technology. American Society for Mass Spectrometry 20:1359–1365CrossRefGoogle Scholar
  10. 10.
    Hogan T, Taylor S, Cheung K, Velasquez-Garcia L, Akinwande A, Pedder R (2010) Performance Characteristics of a MEMS Quadrupole Mass Filter With Square Electrodes: Experimental and Simulated Results. IEEE Transactions on Instrumentation and Measurement 59(9):2458–2467CrossRefGoogle Scholar
  11. 11.
    Mastrangelo C, Yeh J-J, Muller R (1992) Electrical and optical characteristics of vacuum-sealed polysilicon microlamps. IEEE Transactions on Electron Devices 39(6):1363–1375CrossRefGoogle Scholar
  12. 12.
    Han K, Lee Y, Jun D, Lee S, Jung KW, Yang SS (2011) Field Emission Ion Source Using a Carbon Nanotube Array for Micro Time-of-Flight Mass Spectrometer. Japanese Journal of Applied Physics 50:06GM04CrossRefGoogle Scholar
  13. 13.
    Madou M (2002) Fundamentals of microfabrication: the science of miniaturization. CRC, Boca Raton, FLGoogle Scholar
  14. 14.
    Ramírez Wong RM, Hauschild J-P, Wapelhorst E, Müller J (2009) Optimization of Microplasma for the Application in a Micro Mass Spectrometer. VDE, BerlinGoogle Scholar
  15. 15.
    Vossen JL, Kern W (1979) Thin Film Processes. Academic, New York, NYGoogle Scholar
  16. 16.
    Chapnam B (1980) Glow Discharge Processes: Sputtering and Plasma Etching. Wiley, New York, NYGoogle Scholar
  17. 17.
    Lieberman MA (2004) Principles of Plasma Discharges and Materials Processing. Wiley, New York, NYGoogle Scholar
  18. 18.
    Scientific Instrument Services, [Online]. Available Accessed 18 Nov 2011
  19. 19.
    Hauschild J-P, Wapelhorst E, Müller J (2007) Mass spectra measured by a fully integrated MEMS mass spectrometer. Int J Mass Spectrom 264(2007):53–60Google Scholar
  20. 20.
    Ewald H, Hintenberg H (1953) Methoden und Anwendungen der Massenspectroskopie. Verlag Chemie-GmbH, WeinheimGoogle Scholar
  21. 21.
    Orloff J (1997) Handbook of Charged Particel Optics. CRC, New York, NYGoogle Scholar
  22. 22.
    Blaum K, Geppert C, Müller P, Nörtershäuser W, Otten EW, Schmitt A, Trautmann N, Wendt K, Bushaw BA (1998) Properties and Performance of a Quadrupole Mass Filter used for Resonance Ionization Mass Spectrometry. International Journal of Mass Spectrometry 181:67–87CrossRefGoogle Scholar
  23. 23.
    Hauschild J-P, Wapelhorst E, Müller J (2009) The novel synchronous ion shield mass analyzer. International Journal of Mass Spectrometry 44:1330–1337CrossRefGoogle Scholar
  24. 24.
    Herzog R (1934) Ionen- und Elektronenoptische Zylinderlinsen und Prismen I. Z f Physik 89:447–473CrossRefGoogle Scholar
  25. 25.
    PHOTONIS France S.A.S., [Online]. Available Accessed 18 Nov 2011
  26. 26.
    Reinhardt-Szyba M, Hauschild J-P, Wapelhorst E, Müller J (2009) Ein Mikromassenspektrometer mit integrierter Mikrokanalplatte, Proceedings mikrosystemtechnik kongress 2009, no. VDE VERLAGGoogle Scholar
  27. 27.
    Jousten K (2008) Handbook of Vacuum Technology. Wiley-Blackwell, WeinheimGoogle Scholar
  28. 28.
    Qu H, Fang D, Sadat A, Yuan P, Xie H (2004) High-resolution integrated micro-gyroscope for space applications. 41st Space CongressGoogle Scholar
  29. 29.
    B.S. GmbH, Bosch Sensortec GmbH, [Online]. Zugriff am 18 Nov 2011Google Scholar
  30. 30.
    DLP & MEMS, Texas Instruments, [Online]. Available Accessed 18 Nov 2011
  31. 31.
    KYOCERA Inc Jet Printhead, Kyocera, [Online]. Available Accessed 18 Nov 2011
  32. 32.
    Sensitec GmbH, [Online]. Available Accessed 18 Nov 2011
  33. 33.
    Quiring G, Hauschild J-P, Wapelhorst E, Müller J (2009) Optimierung der ansteuerung des SIS-massenseparators im planar integrierten mikro-massenspektrometer. Proceedings mikrosystemtechnik kongress 2009, no. VDE VERLAGGoogle Scholar
  34. 34.
    Reinhardt M, Quiring G, Ramírez Wong RM, Wehrs H, Müller J (2010) Helium detection using a planar integrated micro-mass spectrometer. International Journal of Mass Spectrometry 295:145–148CrossRefGoogle Scholar
  35. 35.
    Quiring G, Reinhardt-Szyba M, Müller J (2011) PIMMS, ein universell einsetzbares Mikromassenspektrometer. Proceedings mikrosystemtechnik kongress 2011, no. VDE VERLAGGoogle Scholar
  36. 36.
    Doms M, Müller J (2007) A micromachined vapor-jet vacuum pump. Transducers 2007 - international solid-state sensors, actuators and microsystems conferenceGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jörg Müller
    • 1
    Email author
  • Grigoriy Quiring
    • 1
  • Maria Reinhardt-Szyba
    • 1
  • Régulo Miguel Ramírez Wong
    • 1
  • Henning Wehrs
    • 1
  1. 1.Institute for Microsystem TechnologyHamburg University of TechnologyHamburgGermany

Personalised recommendations