Advertisement

Use of Matrix Assisted Laser Desorption/Ionization Imaging Mass Spectrometry (MALDI-IMS) in the Development of Novel Small Molecule Drugs

  • Jihai PangEmail author
  • Timothy L. Madden
Chapter

Abstract

Modern drug research and development includes the study of drug distribution and its metabolites within the biological organ and tissues. The high performance liquid chromatography coupled to a tandem mass spectrometer (HPLC-MS/MS) is currently widely employed in the study of drug metabolism and pharmacokinetic characterization of new drug molecules.

Today, the newest frontier, which adds the mass spectrometry to the arsenal of tools for the direct analysis of tissue biopsies and molecular diagnosis, is typically called Matrix Assisted Laser Desorption/Ionization Imaging Mass Spectrometry (MALDI-IMS). This powerful analytical tool is a new molecular imaging technique which in essence takes a mass spectral “snapshots” of intact tissue sections, revealing how the macromolecules, such as peptides and protein, and small molecular drugs and their metabolites are spatially distributed within a given biological tissue sample. In this chapter, MALDI-IMS technology is presented as well as applications of such technology in drug development and in clinical pharmacology. It provides direct, unambiguous evidence for the presence of drug substance in tissue sections.

Keywords

Matrix Solution Image Mass Spectrometry Sinapinic Acid MALDI Matrix Matrix Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviation

3D

Three-dimensional

AgNPs

Silver nanoparticles

APCI

Atmospheric pressure chemical ionization

AP-IR-MALDI-MS

Atmospheric pressure infrared MALDI mass ­spectrometry

CHCA

α-Cyano-4-hydroxycinnamic acid

DESI

Desorption electrospray ionization

DHB

2,5-Dihydroxybenzoic acid

ESI

Electrospray ionization

HPLC-MS/MS

High performance liquid chromatography - mass ­spectrometer

LAESI

Laser ablation electrospray ionization mass spectrometry

LA-ICP-MS

Laser ablation-inductively coupled plasma-mass ­spectrometry

LDI

Laser desorption ionization

LDPI

Laser desorption postionization

LEV

Levofloxacin

MALDI-IMS

Matrix assisted laser desorption/ionization imaging mass spectrometry

MALDI-FT-ICR-MS

MALDI-Fourier transform ion cyclotron resonance mass spectrometry

MALDI-Q-IM-TOFMS

MALDI-Q-ion mobility-TOFMS

MALDI-QIT-TOF-MS

MALDI-Quadrupole-ion-trap-TOF mass spectrometry

MALDI-TOF-IMS

MALDI-TOF-imaging mass spectrometry

MALDI-TOF-MS

MALDI Time-of –flight mass spectrometry

MRI

Magnetic resonance imaging

MSF

Matrix solution fixation

MXF

Moxifloxacin

Nano-PALDI-IMS

Nanoparticle-assisted laser desorption/ionization imaging mass spectrometry

NIMS

Nanostructure initiator mass spectrometry

OCN

Oscillating capillary nebulizer

OLZ

Olanzapine

PCa

Prostate cancers

SA

Sinapinic acid

SALDI-MS

Surface-assisted laser desorption/ionization mass ­spectrometry

SIMS

Secondary ion mass spectrometry

TB

Tuberculosis

TCA

Taurocholic acid

TCDCA

Taurochenodeoxycholic acid

TFA

Trifluoroacetatic acid

TLC

Thin layer chromatography

UPLC

Ultraperformance liquid chromatography

References

  1. 1.
    Fenn J, Mann M, Meng C, Wong S, Whitehouse C (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71. doi:10.1126/science.2675315Google Scholar
  2. 2.
    Karas M, Bachmann D, Hillenkamp F (1985) Influence of the wavelength in high-irradiance ultraviolet laser desorption mass spectrometry of organic molecules. Anal Chem 57:2935–2939. doi:10.1021/ac00291a042Google Scholar
  3. 3.
    Karas M, Hillenkamp F (1988) Laser desorption ionization of protein with molecular masses exceeding 10000 Daltons. Anal Chem 60:2299–2301. doi:10.1021/ac00171a028Google Scholar
  4. 4.
    Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T (1988) Protein and polymer analysis up to m/z 100000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153. doi:10.1002/rcm.1290020802Google Scholar
  5. 5.
    Kiyohara M, Hama Y, Yamaguchi K, Ito M (2006) Structure of β-1,3-xylooligosaccharides generated from caulerpa racemosa var. laete-virens β1,3-xylan by the action of β1,3-xylanase. J Biochem 140:369–373. doi:10.1093/jb/mvj173Google Scholar
  6. 6.
    Mechref Y, Kang P, Novotny M (2006) Differentiating structural isomers of sialylated glycans by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry. Rapid Commun Mass Spectrom 20:1381–1389. doi:10.1002/rcm.2445Google Scholar
  7. 7.
    Troendle F, Reddick C, Yost R (1999) Detection of pharmaceutical compounds in tissue by matrix-assisted laser desorption/ionization and laser desorption/chemical ionization tandem mass spectrometry with a quadrupole ion trap. J Am Soc Mass Spectrom 10:1315–1321Google Scholar
  8. 8.
    Caprioli R, Farmer T, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69:4751–4760Google Scholar
  9. 9.
    Koomen J, Stoeckli M, Caprioli R (2000) Mapping of surrogate markers of cellular components and structures using laser desorption/ionization mass spectrometry. J Mass Spectrom 35:258–264Google Scholar
  10. 10.
    Chaurand P, Schwartz S, Caprioli R (2002) Imaging mass spectrometry: a new tool to investigate the spatial organization of peptides and protein in mammalian tissue sections. Curr Opin Chem Biol 6:676–681Google Scholar
  11. 11.
    Schwartz S, Weil R, Johnson M, Toms S, Caprioli R (2004) Protein profiling in brain tumors using mass spectrometry: feasibility of a new technique for the analysis of protein expression. Clin Cancer Res 10:981–987Google Scholar
  12. 12.
    Cornett D, Reyzer M, Chaurand P, Caprioli R (2007) MALDI imaging mass spectrometry: molecular snapshots of biochemical systems. Nat Methods 10:828–833. doi:10.1038/nmeth1094Google Scholar
  13. 13.
    Grey A, Chaurand P, Caprioli R, Schey K (2009) MALDI imaging mass spectrometry of integral membrane protein from ocular lens and retinal tissue. J Proteome Res 8:3278–3283. doi:10.1021/pr800956yGoogle Scholar
  14. 14.
    Oppenheimer S, Mi D, Sanders M, Caprioli R (2010) Molecular analysis of tumor margins by MALDI mass spectrometry in renal carcinoma. J Proteome Res 9:2182–2190. doi:10.1021/pr900936zGoogle Scholar
  15. 15.
    Chaurand P, Rahman M, Hunt T, Mobley J, Gu G, Latham J, Caprioli R, Kasper S (2008) Monitoring mouse prostate development by profiling and imaging mass spectrometry. Mol Cell Proteomics 7:411–423. doi:10.1074/mcp.M700190-MCP200Google Scholar
  16. 16.
    Dickinson D, La Duc M, Haskins W, Gornushkin I, Winefordner J, Powell D, Venkateswaran K (2004) Species differentiation of a diverse suite of Bacillus spores by mass spectrometry-based protein profiling. Appl Environ Microbiol 70:475–482. doi:10.1128/AEM.70.1.475-482.2004Google Scholar
  17. 17.
    Gustafsson J, Oehler M, McColl S, Hoffmann P (2010) Citric acid antigen retrieval (CAAR) for tryptic peptide imaging directly on archived formalin-fixed paraffin-embedded tissue. J Proteome Res. doi:10.1021/pr9011766Google Scholar
  18. 18.
    Liu N, Liu F, Xu B, Gao Y, Li X, Wei K, Zhang X, Yang S (2008) Establishment of imaging mass spectrometry for biological tissue and its application on the proteome analysis of microwave radiated hippocampus. Chin J Anal Chem 36(4):421–425Google Scholar
  19. 19.
    Djidja M, Claude E, Snel M, Francese S, Scriven P, Carolan V, Clench M (2010) Novel molecular tumor classification using MALDI-mass spectrometry imaging of tissue micro-assay. Anal Bioanal Chem 397:587–601. doi:10.1007/s00216-3554-6Google Scholar
  20. 20.
    Monroe E, Annangudi S, Hatcher N, Gutstein H, Rubakhin S, Sweedler J (2008) SIMS and MALDI MS imaging of the spinal cord. Proteomics 8:3746–3754. doi:10.1002/pmic.200800127Google Scholar
  21. 21.
    Nakanishi T, Ando E, Furuta M, Tsunasawa S, Nishimura O (2007) Direct on-membrane peptide mass fingerprinting with MALDI-MS of tyrosine-phosphorylated protein detected by immunostaining. J Chromatogr B 847:24–29. doi:10.1016/j.jchromb.2006.08.024Google Scholar
  22. 22.
    Thiery G, Shchepinov M, Southern E, Audebourg A, Audard V, Terries B, Gut I (2007) Multiplex target protein imaging in tissue sections by mass spectrometry – TAMSIM. Rapid Commun Mass Spectrom 21:823–829. doi:10.1002/rcm.2895Google Scholar
  23. 23.
    Uys J, Grey A, Wiggins A, Schwacke J, Schey K, Kalivas P (2010) Matrix-assisted laser desorption/ionization tissue profiling of secretoneurin in the nucleus accumbens shell from cocaine-sensitized rats. J Mass Spectrom 45:97–103. doi:10.1002/jms.1697Google Scholar
  24. 24.
    Rauser S, Marquardt C, Balluff B, Deininger S, Albers C, Belau E, Hartmer R, Suckau D, Specht K, Ebert M, Schmitt M, Aubele M, Höfler H, Walch A (2010) Classification of HER2 receptor status in breast cancer tissue by MALDI imaging mass spectrometry. J Proteome Res 9:1854–1863. doi:10.1021/pr901008dGoogle Scholar
  25. 25.
    Remoortere A, Zeijl R, Oever N, Franck J, Longuespée R, Wisztorski M, Salzet M, Deelder A, Fournier I, McDonnell L (2010) MALDI imaging and profiling MS of higher mass proteins from tissue. J Am Soc Mass Spectrom 21:1922–1929. doi:0.1016/j.jasms.2010.07.011Google Scholar
  26. 26.
    Verhaert P, Conaway M, Pekar T, Miller K (2007) Neuropeptide imaging on an LTQ with vMALDI source: the complete ‘all-in-one’ peptidome analysis. Int J Mass Spectrom 260:177–184. doi:10.1016/j.ijms2006.11.008Google Scholar
  27. 27.
    Chaurand P, Cornett D, Angel P, Caprioli R (2011) From whole-body sections down to cellular level, multiscale imaging of phospholipids by MALDI mass spectrometry. Mol Cell Proteomics 10(2):O110.004259. doi:10.1074/mcp.O110.004259Google Scholar
  28. 28.
    Colsch B, Woods A (2010) Localization and imaging of sialylated glycosphingolipids in brain tissue sections by MALDI mass spectrometry. Glycobiology 20:661–667. doi:10.1093/glycob/cwq031Google Scholar
  29. 29.
    Dill A, Ifa D, Manicke N, Zheng O, Cooks R (2009) Mass spectrometric imaging of lipids using desorption electrospray ionization. J Chromatogr B 877:2883–2889. doi:10.1016/j.jchromb.2008.12.058Google Scholar
  30. 30.
    Hankin J, Murphy R (2010) Relationship between MALDI IMS intensity and measured quantity of selected phospholipids in rat brain sections. Anal Chem 82:8476–8484. doi:10.1021/ac101079vGoogle Scholar
  31. 31.
    Jackson S, Wang H, Woods A (2007) In situ structure characterization of glycerophospholipids and sulfatides in brain tissue using MALDI-MS/MS. J Am Soc Mass Spectrom 18:17–26. doi:10.1016/j.jasms.2006.08.015Google Scholar
  32. 32.
    Koizumi S, Yamamoto S, Hayasaka T, Konishi Y, Yamaguchi-Okada M, Goto-Inoue N, Sugiura Y, Setou M, Namba H (2010) Imaging mass spectrometry revealed the production of lyso-phosphatidylcholine in the injured ischemic rat brain. Neuroscience 168:219–225. doi:10.1016/j.neuroscience.2010.03.056Google Scholar
  33. 33.
    Meriaux C, Franck J, Wisztorski M, Salzet M, Fournier I (2010) Liquid ionic matrixes for MALDI mass spectrometry imaging of lipids. J Proteomics 73:1204–1218. doi:10.1016/j.jprot.2010.02.010Google Scholar
  34. 34.
    Mikawa S, Suzuki M, Fujimoto C, Sato K (2009) Imaging of phosphatidylcholines in the adult rat brain using MALDI-TOF MS. Neurosci Lett 451:45–49. doi:10.1016/j.neulet.2008.12.035Google Scholar
  35. 35.
    Sjövall P, Lausmaa J, Johansson B (2004) Mass spectrometric imaging of lipids in brain tissue. Anal Chem 76:4271–4278. doi:10.1021/ac049389pGoogle Scholar
  36. 36.
    Wang H, Post S, Woods A (2008) A minimalist approach to MALDI imaging of glycerophospholipids and sphingolipids in rat brain sections. Int J Mass Spectrom 278:143–149. doi:10. 1016/j.ijms.2008.04.005Google Scholar
  37. 37.
    Veloso A, Astigarraga E, Barreda-Gómez G, Manuel I, Ferrer I, Giralt M, Ochoa B, Fresnedo O, Rodriguez-Puertas R, Fernandez J (2011) Anatomical distribution of lipids in human brain cortex by imaging mass spectrometry. J Am Soc Mass Spectrom 22:329–338. doi:10.1007/s13361-010-0024-5Google Scholar
  38. 38.
    Naven T, Harvey D, Brown J, Critchley G (1997) Fragmentation of complex carbohydrates following ionization by matrix-assisted laser desorption with an instrument fitted with time-lag focusing. Rapid Commun Mass Spectrom 11:1681–1686Google Scholar
  39. 39.
    Kong Y, Zhu Y, Zhang J (2001) Ionization mechanism of oligonucleotides in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 15:57–64Google Scholar
  40. 40.
    Molin L, Cristoni S, Crotti S, Bernardi L, Seraglia R, Traldi P (2008) Sieve-based device for MALDI sample preparation. I. Influence of sample deposition conditions in oligonucleotide analysis to achieve significant increases in both sensitivity and resolution. J Mass Spectrom 43:1512–1520. doi:10.1002/jms.1428Google Scholar
  41. 41.
    Anker J, Hall W, Lambert M, Velasco P, Mrksich M, Klein W, Van Duyne R (2009) Detection and identification of bioanalytes with high resolution LSPR spectroscopy and MALDI mass spectrometry. J Phys Chem 113:5891–5894. doi:10.1021/jp900266kGoogle Scholar
  42. 42.
    Bauer J, Chakravarthy A, Rosenbluth J, Mi D, Seeley E, Granja-Ingram N, Olivares M, Kelley M, Mayer I, Meszoely I, Means-Powell J, Johnson K, Tsai C, Ayers G, Sanders M, Schneider R, Formenti S, Caprioli R, Pietenpol J (2010) Proteomic and genomic analyses of breast tumors from patients receiving neoadjuvant paclitaxel and radiation. Clin Cancer Res 16(2):681–690. doi:10.1158/1078-0432.CCR-09-1091Google Scholar
  43. 43.
    Benabdellah F, Touboul D, Brunelle A, Laprévote O (2009) In situ primary metabolites localization on a rat brain section by chemical mass spectrometry imaging. Anal Chem 81:5557–5560. doi:10.1021/ac9005364Google Scholar
  44. 44.
    Goodwin R, Dungworth J, Cobb S, Pitt A (2008) Time-dependent evolution of tissue markers by MALDI-MS imaging. Proteomics 8:3801–3808. doi:10. 1002/pmic.2008002001Google Scholar
  45. 45.
    Lemaire R, Menguellet S, Stauber J, Marchaudon V, Lucot J, Collinet P, Farine M, Vinatier D, Day R, Ducoroy P, Salzet M, Fournier I (2007) Specific MALDI imaging and profiling for biomarker hunting and validation: fragment of the 11 S proteasome activator complex, rag alpha fragment, is a new potential ovary cancer biomarker. J Proteome Res 6:4127–4134. doi:10.1021/pr0702722Google Scholar
  46. 46.
    Lemaire R, Stauber J, Wisztorski M, Van Camp C, Desmons A, Deschamps M, Proess G, Rudlof I, Woods A, Day R, Salzet M, Fournier I (2007) Tag-mass: specific molecular imaging of transcriptome and proteome by mass spectrometry based on photocleavable tag. J Proteome Res 6:2057–2067. doi:10.1021/rp0700044Google Scholar
  47. 47.
    Meistermann H, Norris J, Aerni H, Cornett D, Friedlein A, Erskine A, Augustin A, Mudry M, Ruepp S, Suter L, Langen H, Caprioli R, Ducret A (2006) Biomarker discovery by imaging mass spectrometry, transthyretin is a biomarker for gentamicin-induced nephrotoxicity in rat. Mol Cell Proteomics 5:1876–1886. doi:10.1074/mcp.M500399-MCP200Google Scholar
  48. 48.
    Stauber J, Lemaire R, Franck J, Bonnel D, Croix D, Day R, Wisztorski M, Fournier I, Salzet M (2008) MALDI imaging of formalin-fixed paraffin-embedded tissues: application to model animals of Parkinson disease for biomarker hunting. J Proteome Res 7:969–978. doi:10.1021/pt070464xGoogle Scholar
  49. 49.
    Chen J, Hsieh Y, Knemeyer I, Crossman L, Korfmacher W (2008) Visualization of first-pass drug metabolism of terfenadine by MALDI-imaging mass spectrometry. Drug Metab Lett 2:1–4Google Scholar
  50. 50.
    Cohen L, Gusev A (2001) Small molecule analysis by MALDI mass spectrometry. Anal Bioanal Chem 373:571–586. doi:10.1007/s00216-002-1321-zGoogle Scholar
  51. 51.
    Cristoni S, Brioschi M, Rizzi A, Sironi L, Gelosa P, Tremoli E, Bernardi L, Banfi C (2006) Analysis of rosuvastatin by imaging mass spectrometry. Rapid Commun Mass Spectrom 20:3483–3487. doi:10.1002/rcm.2744Google Scholar
  52. 52.
    Hsieh Y, Casale R, Fukuda E, Chen J, Knemeyer I, Wingate J, Morrison R, Korfmacher W (2006) Matrix-assisted laser desorption/ionization imaging mass spectrometry for direct measurement of clozapine in rat brain tissue. Rapid Commun Mass Spectrom 20:965–972. doi:10.1002/rcm.2397Google Scholar
  53. 53.
    Mangé A, Chaurand P, Perrochia H, Roger P, Caprioli R, Solassol J (2009) Liquid chromatography-tandem and MALDI imaging mass spectrometry analyses of RCL2/CS100-fixed, paraffin-embedded tissue: proteomics evaluation of an alternate fixative for biomarker discovery. J Proteome Res 8:5619–5628. doi:10.1021/pr9007128Google Scholar
  54. 54.
    Signor J, Varesio E, Staack R, Starke V, Richter W, Hopfgartner G (2007) Analysis of erlotinib and its metabolites in rat tissue sections by MALDI quadrupole time-of-flight mass spectrometry. J Mass Spectrom 42:900–909. doi:10.1002/jms.1225Google Scholar
  55. 55.
    Su A, Liu J, Lin C (2005) Rapid drug-screening of clandestine tablets by MALDI-TOF mass spectrometry. Talanta 67:718–724. doi:10.1016/j.talanta.2005.03.013Google Scholar
  56. 56.
    Wang H, Jackson S, McEuen J, Woods A (2005) Localization and analyses of small drug molecules in rat brain tissue sections. Anal Chem 77(20):6682–6686. doi:10.1021/ac050868dGoogle Scholar
  57. 57.
    Woods A, Jackson S (2006) Brian tissue lipidomics: direct probing using matrix-assisted laser desorption/ionization mass spectrometry. AAPS J 8(2):E391–E395Google Scholar
  58. 58.
    Woods A, Wang H, Jackson S (2007) A snapshot of tissue glycerolipids. Curr Pharm Des 11:2577–2591Google Scholar
  59. 59.
    Andersson M, Groseclose N, Deutch A, Caprioli R (2008) Imaging mass spectrometry of proteins and peptides: 3D volume reconstruction. Nat Methods 5(1):101–109. doi:10.1038/nmeth1145Google Scholar
  60. 60.
    Cornett D, Frappier S, Caprioli R (2008) MALDI-FTICR imaging mass spectrometry of drugs and metabolites in tissue. Anal Chem 80:5648–5653. doi:10.1021/ac800617sGoogle Scholar
  61. 61.
    Hillenkamp F, Peter-Katalinić J (2007) MALDI MS: a practical guide to instrumentation, methods and applications. Wiley-VCHGmbH & Co. KGaA, Weinheim, pp 19Google Scholar
  62. 62.
    Vorm O, Roepstorff P, Mann M (1994) Improved resolution and very high sensitivity in MALDI TOF of matrix surfaces made by fast evaporation. Anal Chem 66:3218–3287Google Scholar
  63. 63.
    Dai Y, Whittal R, Li L (1996) Confocal fluorescence microscopic imaging for investigating the analyte distribution in MALDI matrices. Anal Chem 68:2494–2500Google Scholar
  64. 64.
    Dai Y, Whittal R, Li L (1999) Two-layer sample preparation: a method for MALDI-MS analysis of complex peptide and protein mixtures. Anal Chem 71:1087–1091. doi:10.1021/ac980684hGoogle Scholar
  65. 65.
    Dong H, Kemptner J, Marchetti-Deschmann M, Kubicek C, Allmaier G (2009) Development of a MALDI two-layer volume sample preparation technique for analysis of colored conidia spores of Fusarium by MALDI linear TOF mass spectrometry. Anal Bioanal Chem 395:1373–1383. doi:10.1007/s00216-009-3067-3Google Scholar
  66. 66.
    Schriemer D, Li L (1996) Detection of high molecular weight narrow polydisperse polymers up to 1.5 million daltons by MALDI mass spectrometry. Anal Chem 68:2721–2725Google Scholar
  67. 67.
    Li L, Golding R, Whittal R (1996) Analysis of single mammalian cell lysates by mass spectrometry. J Am Chem Soc 18:11662–11663Google Scholar
  68. 68.
    Kemptner J (2009) Evaluation of matrix-assisted laser desorption/ionization (MALDI) preparation techniques for surface characterization of intact Fusarium spores by MALDI linear time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 23:877–884. doi:10.1002/rcm.3949Google Scholar
  69. 69.
    Kussmann M, Nordhoff E, Rahbek-Nielsen H, Haebel S, Rossel-Larsen M, Jakobsen L, Gobom J, Mirgorodskaya E, Kroll-Kristensen A, Palm L, Roepstorff P (1997) Matrix-assisted laser desorption/ionization mass spectrometry sample preparation techniques designed for various peptides and protein analytes. J Mass Spectrom 32:593–601Google Scholar
  70. 70.
    Keller B, Li L (2006) Three-layer matrix/sample preparation method for MALDI MS analysis of low nanomolar protein samples. J Am Soc Mass Spectrom 17:780–785. doi:10.1016/j.jasms.2006.02.012Google Scholar
  71. 71.
    Han J, Schey K (2006) MALDI tissue imaging of ocular lens α-crystalline. Invest Ophthalmol Vis Sci 47:2990–2996Google Scholar
  72. 72.
    Kanu A, Dwivedi P, Tam M, Matz L, Hill H Jr (2008) Ion mobility-mass spectrometry. J Mass Spectrom 443:1–22. doi:10.1002/JMS.1383Google Scholar
  73. 73.
    Garrett T, Prieto-Conaway M, Kovtoun V, Bui H, Izgarian N, Stafford G, Yost R (2007) Imaging of small molecules in tissue sections with a new intermediate-pressure MALDI linear ion trap mass spectrometer. Int J Mass Spectrom 260:166–176. doi:10.1016/j.ijms.2006.09.019Google Scholar
  74. 74.
    Khatib-Shahidi S, Andersson M, Herman J, Gillespie T, Caprioli R (2006) Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry. Anal Chem 78(18):6448–6456. doi:10.1021/ac060788pGoogle Scholar
  75. 75.
    Chaurand P, Norris J, Cornett D, Mobley J, Caprioli R (2006) New developments in profiling and imaging of protein from tissue sections by MALDI mass spectrometry. J Proteome Res 5:2889–2900. doi:10.1021/pr060346uGoogle Scholar
  76. 76.
    Acquadro E, Cabella C, Ghiani S, Miragoli L, Bucci E, Corpillo D (2009) Matrix-assisted laser desorption ionization imaging mass spectrometry detection of a magnetic resonance imaging contrast agent in mouse liver. Anal Chem 81:2779–2784. doi:10.1021/ac900038yGoogle Scholar
  77. 77.
    Burrell M, Earnshaw C, Clench M (2007) Imaging matrix assisted laser desorption ionization mass spectrometry: a technique to map plant metabolites within tissue at high spatial resolution. J Exp Bot 58(4):757–763. doi:10.1093/jxb/erl139Google Scholar
  78. 78.
    Cazares L, Troyer D, Mendrinos S, Lance R, Nyalwidhe J, Beydoun H, Clements M, Drake R, Semmes O (2009) Imaging mass spectrometry of a specific fragment of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 2 discriminates cancer from uninvolved prostate tissue. Clin Cancer Res 15(17):5541–5551. doi:10.1158/1078-4032.CCR-08-2892Google Scholar
  79. 79.
    Garden R, Sweedler J (2000) Heterogeneity within MALDI samples as revealed by mass spectrometric imaging. Anal Chem 72:30–36. doi:10.1021/ac9908997Google Scholar
  80. 80.
    McCombie G, Staab D, Stoeckli M, Knochenmuss R (2005) Spatial and spectral correlations in MALDI mass spectrometry imaging by clustering and multivariate analysis. Anal Chem 77:6118–6124. doi:10.1021/ac051081qGoogle Scholar
  81. 81.
    Broersen A, Liere R, Altelaar A, Heeren R, MacDonnell L (2008) Automated, feature-based imaging alignment for high-resolution imaging mass spectrometry of large biological samples. J Am Soc Mass Spectrom 19:823–832. doi:10.1016/j.jasms.2008.02.015Google Scholar
  82. 82.
    Brunelle A, Touboul D, Laprévote O (2005) Biological tissue imaging with time-of flight secondary ion mass spectrometry and cluster ion sources. J Mass Spectrom 40:985–999. doi:10.1002/jms.902Google Scholar
  83. 83.
    Lorey D II, Morrison G, Chandra S (2001) Dynamic secondary ion mass spectrometry analysis of boron from boron neutron capture therapy drug in co-cultures: single-cell imaging of two different cell types within the same ion microscopy field of imaging. Anal Chem 73:3947–3953. doi:10.1021/ac0103266Google Scholar
  84. 84.
    Seyer A, Riu A, Debrauwer L, Bourgès-Abella N, Brunelle A, Laprévote O, Zalko D (2010) Time-of-flight secondary ion mass spectrometry imaging demonstrates the specific localization of deca-bromo-diphenyl-ether residues in the ovaries and adrenal glands of exposed rats. J Am Soc Mass Spectrom 21:1836–1845. doi:10.1016/j.jasms.2010.06.019Google Scholar
  85. 85.
    Touboul D, Halgand F, Brunelle A, Kersting R, Tallarek E, Hagenhoff B, Laprévote O (2004) Tissue molecular ion imaging by gold cluster ion bombardment. Anal Chem 76:1550–1559. doi:10.1021/acGoogle Scholar
  86. 86.
    Zheng L, McQuaw C, Ewing A, Winograd N (2007) Sphingomyelin/phosphatidylcholine and cholesterol interactions studied by imaging mass spectrometry. J Am Chem Soc 129(51):15730–15731. doi:10.1021/ja0741675Google Scholar
  87. 87.
    Luxembourg S, McDonnell L, Duursma M, Guo X, Heeren R (2003) Effect of local matrix crystal variations in matrix-assisted ionization techniques for mass spectrometry. Anal Chem 75:2333–2341. doi:10.1021/ac026434pGoogle Scholar
  88. 88.
    McDonnell L, Piersma S, Altelaar A, Mize T, Luxembourg S, Verhaert P, van Minnen J, Heeren R (2005) Subcellular imaging mass spectrometry of brain tissue. J Mass Spectrom 40:160–168. doi:10.1002/jms.735Google Scholar
  89. 89.
    Ellis S, Wu C, Deeley J, Zhu X, Truscott R, Panhuis J, Cooks R, Mitchell T, Blanksby S (2010) Imaging of human lens lipids by desorption electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 21:2095–2104. doi:10.1016/j.jasms.2010.09.003Google Scholar
  90. 90.
    Girod M, Shi Y, Cheng J, Cooks G (2010) Desorption electrospray ionization imaging mass spectrometry of lipids in rat spinal cord. J Am Soc Mass Spectrom 21:1177–1189. doi:10.1016/j.jasms.2010.03.028Google Scholar
  91. 91.
    Ifa D, Wiseman J, Song Q, Cooks G (2007) Development of capabilities for imaging mass spectrometry under ambient conditions with desorption electrospray ionization (DESI). Int J Mass Spectrom 259:8–15. doi:10.106/j.ijms.2006.08.003Google Scholar
  92. 92.
    Kertesz V, van Berkel G (2008) Improved imaging resolution in desorption electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 22:2639–2644. doi:10.1002/rcm.3662Google Scholar
  93. 93.
    Kertesz V, van Berkel G, Vavrek M, Koeplinger K, Schneider B, Covey T (2008) Comparison of drug distribution images from whole-body thin tissue sections obtained using desorption electrospray ionization tandem mass spectrometry and autoradiography. Anal Chem 80:5168–5177. doi:10.1021/ac800546aGoogle Scholar
  94. 94.
    Manicke N, Dill A, Ifa D, Cooks R (2010) High-resolution tissue imaging on an orbitrap mass spectrometry by desorption electrospray ionization mass spectrometry. J Mass Spectrom 45:223–226. doi:10.1002/jms.1707Google Scholar
  95. 95.
    Takáts Z, Wiseman J, Gologan B, Cooks G (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306:471–473. doi:10.1126/science.1104404Google Scholar
  96. 96.
    Takáts Z, Wiseman J, Cooks G (2005) Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and application in forensics, chemistry, and biology. J Mass Spectrom 40:1261–1275. doi:10.1002/jms.922Google Scholar
  97. 97.
    Takats Z, Kobliha V, Sevcik K, Novak P, Kruppa G, Lemr K, Havlicek V (2008) Characterization of DESI-FTICR mass spectrometry-from ECD to accurate mass tissue analysis. J Mass Spectrom 43:196–203. doi:10.1002/jms.1285Google Scholar
  98. 98.
    Watrous J, Hendricks N, Meehan M, Dorrestein P (2010) Capturing bacterial metabolic exchange using thin film desorption electrospray ionization-imaging mass spectrometry. Anal Chem 82:1598–1600. doi:10/1021/ac9027388Google Scholar
  99. 99.
    Wiseman J, Ifa D, Zhu Y, Kissinger C, Manicke N, Kissinger P, Cooks R (2008) Desorption electrospray ionization mass spectrometry: imaging drug and metabolites in tissues. Proc Natl Acad Sci USA 105(47):18120–18125. doi:10.1073/pnas.0801066105Google Scholar
  100. 100.
    Northen T, Yanes S, Northen M, Marrinucci D, Uritboonthai W, Apon J, Golledge S, Nordström A, Siuzdak G (2007) Clathrate nanostructures for mass spectrometry. Nature 449:1033–1037. doi:10.1038/nature06195Google Scholar
  101. 101.
    Patti G, Woo H, Yanes O, Shriver L, Thomas D, Uritboonthai W, Apon J, Steenwyk R, Manchester M, Siuzdak G (2010) Detection of carbohydrates and steroids by cation-enhanced nanostructure-initiator mass spectrometry (NIMS) for biofluid analysis and tissue imaging. Anal Chem 82:121–128. doi:10.1021/ac9014353Google Scholar
  102. 102.
    Yanes O, Woo H, Northen T, Oppenheimer S, Shriver L, Apon J, Estrada M, Potchoiba M, Steenwyk R, Manchester M, Siuzdak G (2009) Nanostructure initiator mass spectrometry: tissue imaging and direct biofluid analysis. Anal Chem 81:2969–2975. doi:10.1021/ac802576qGoogle Scholar
  103. 103.
    Li Y, Shrestha B, Vertes A (2007) Atmospheric pressure molecular imaging by infrared MALDI mass spectrometry. Anal Chem 79:523–532. doi:10.1021/ac061577nGoogle Scholar
  104. 104.
    Gholap D, Izmer A, Samber B, van Elteren J, Šelih V, Evens R, Schamphelaere K, Janssen C, Balcaen L, Lindemann I, Vincze L, Vanhaecke F (2010) Comparison of laser ablation-inductively coupled plasma-mass spectrometry and micro-X-ray fluorescence spectrometry for elemental imaging. Anal Chim Acta 664:19–26. doi:10.1016/j.aca.2010.01.052Google Scholar
  105. 105.
    Dobrowolska J, Dehnhardt M, Matusch A, Zoriy M, Palomero-Gallagher N, Koscielniak P, Zilles K, Becker J (2008) Quantitative imaging of zinc, copper and lead in three distinct regions of the human brain by laser ablation inductively coupled plasma mass spectrometry. Talanta 74:717–723. doi:10.1016/j.talanta.2007.06.051Google Scholar
  106. 106.
    Santos M, Wagner M, Wu B, Scheider J, Oehlmann J, Cadore S, Becker J (2009) Biomonitoring of metal contamination in marine prosobranch snail (nassarius reticulates) by imaging laser ablation inductively coupled plasmas mass spectrometry (LA-ICP-MS). Talanta 80:428–433. doi:10.1016/j.talanta.2009.06.080Google Scholar
  107. 107.
    Akhmetov A, Moore J, Gasper G, Koin P, Hanley L (2010) Laser desorption postionization for imaging MS of biological material. J Mass Spectrom 45:137–145. doi:10.1002/jms.1716Google Scholar
  108. 108.
    Nemes P, Barton A, Li Y, Vertes A (2008) Ambient molecular imaging and depth profiling of live tissue by infrared laser ablation electrospray ionization mass spectrometry. Anal Chem 80:4575–4582. doi:10.1021/ac8004082Google Scholar
  109. 109.
    Nemes P, Woods A, Vertes A (2010) Simultaneous imaging of small metabolites and lipids in rat brain tissue at atmospheric pressure by laser ablation electrospray ionization mass spectrometry. Anal Chem 82:982–988. doi:10.1021/ac902245pGoogle Scholar
  110. 110.
    Liu Q, Xiao Y, Pagan-Miranda C, Chiu Y, He L (2009) Metabolite imaging using matrix-enhanced surface-assisted laser desorption/ionization mass spectrometry (ME-SALDI-MS). J Am Soc Mass Spectrom 20:80–88. doi:10.1016/j.jasms.2008.09.011Google Scholar
  111. 111.
    Liu Q, He L (2009) Ionic matrix for matrix-enhanced surface-assisted laser desorption/ionization mass spectrometry (ME-SALDI-MS). J Am Soc Mass Spectrom 20:2229–2237. doi:10.1016/j.jasms.2009.08.011Google Scholar
  112. 112.
    Watanabe T, Kawasaki H, Yonezawa T, Arakawa R (2008) Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) of low molecular weight organic compounds and synthetic polymers using zinc oxide (ZnO) nanoparticles. J Mass Spectrom 43:1063–1071. doi:10.1002/jms.1385Google Scholar
  113. 113.
    Jackson S, Wang H, Woods A, Ugarov M, Egan T, Schultz A (2005) Direct tissue analysis of phospholipids in rat brain using MALDI-TOFMS and MALDI-Ion mobility-TOFMS. J Am Soc Mass Spectrom 16:133–138. doi:10.1016/j.jasms.2004.10.002Google Scholar
  114. 114.
    Jackson S, Ugarov M, Egan T, Post J, Langlais D, Schultz J, Woods A (2007) MALDI-ion mobility-TOFMS imaging of lipids in rat brain tissue. J Mass Spectrom 42:1093–1098. doi:10.1002/jms.1245Google Scholar
  115. 115.
    McLean J, Ridenour W, Caprioli R (2007) Profiling and imaging of tissues by imaging ion mobility-mass spectrometry. J Mass Spectrom 42:1099–1105. doi:10.1002/jms.1254Google Scholar
  116. 116.
    Stauber J, MacAleese L, Franck J, Claude E, Snel M, Kaletas B, Wiel I, Wisztorski M, Fournier I, Fournier I (2010) On-tissue protein identification and imaging by MALDI-Ion mobility mass spectrometry. J Am Soc Mass Spectrom 20:338–347. doi:10.1016/j.jasms.2009.09.016Google Scholar
  117. 117.
    Trim P, Henson C, Avery J, McEwen A, Snel M, Claude E, Marshall P, West A, Princivalle A, Clench M (2008) Matrix-assisted laser desorption/ionization-ion mobility separation-mass spectrometry imaging of vinblastine in whole body tissue sections. Anal Chem 80:8628–8634. doi:10.1021/ac8015467Google Scholar
  118. 118.
    Drexler D, Garrett T, Cantone J, Diters R, Mitroka J, Conaway M, Adams S, Yost R, Sanders M (2007) Utility of imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization (MALDI) on an ion trap mass spectrometer in the analysis of drugs and metabolites in biological tissue. J Pharmacol Toxicol Methods 55:279–288. doi:10.1016/j.vascn.2006.11.004Google Scholar
  119. 119.
    Landgraf R, Conaway M, Garrett T, Stacpoole P, Yost R (2009) Imaging of lipids in spinal cord using intermediate pressure matrix-assisted laser desorption-liner ion trap/orbitrap MS. Anal Chem 81:8488–8496. doi:10.1021/ac901387uGoogle Scholar
  120. 120.
    Végvári Á, Fehniger T, Gustavsson L, Nilsson A, Andrén P, Kenne K, Nilsson J, Laurell T, Marko-Varga G (2010) Essential tactics of tissue preparation and matrix nano-spotting for successful compound imaging mass spectrometry. J Proteomics 73:1270–1278. doi:10.1016/j.jprot.2010.02.021Google Scholar
  121. 121.
    Shimma S, Sugiura Y, Hayasaka T, Zaima N, Matsumoto M, Setou M (2008) Mass imaging and identification of biomolecules with MALDI-QIT-TOF based system. Anal Chem 80:878–885. doi:10.1021/ac071301vGoogle Scholar
  122. 122.
    Nilsson A, Fehniger T, Gustavsson L, Andersson M, Kenne K, Marko-Varga G, Andrén P (2010) Fine mapping the spatial distribution and concentration of unlabeled drugs within tissue micro-compartments using imaging mass spectrometry. PLoS One 5(7):1–8Google Scholar
  123. 123.
    Snel M, Fuller M (2010) High-spatial resolution matrix-assisted laser desorption ionization imaging analysis of glucosylceramide in spleen sections from a mouse model of gaucher disease. Anal Chem 82(9):3664–3670. doi:10.1021/ac902939kGoogle Scholar
  124. 124.
    Liu Q, Guo Z, He L (2007) Mass spectrometry imaging of small molecules using desorption/ionization on silicon. Anal Chem 79:3535–3541. doi:10.1021/ac0611465Google Scholar
  125. 125.
    Francese S, Dani F, Traldi P, Mastrobuoni G, Pieraccini G, Moneti G (2009) MALDI mass spectrometry imaging, from its origins up to today: the state of the art. Comb Chem High Throughput Screen 12:156–174Google Scholar
  126. 126.
    Schwartz S, Reyzer M, Caprioli R (2003) Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J Mass Spectrom 38:699–708Google Scholar
  127. 127.
    Agar N, Yang H, Carroll R, Lack P, Agar J (2007) Matrix solution fixation: histology-compatible tissue preparation for MALDI mass spectrometry imaging. Anal Chem 79(19):7416–7423. doi:10.1021/ac071460eGoogle Scholar
  128. 128.
    Leinweber B, Tsaprailis G, Monks T, Lau S (2009) Improved MALDI-TOF imaging yields increased protein signals at high molecular mass. J Am Soc Mass Spectrom 20:89–95. doi:10.1016/j.jasms.2008.09.008Google Scholar
  129. 129.
    Altelaar A, Klinkert I, Jalink K, de Lange R, Adan R, Heeren R, Piersma S (2006) Gold-enhanced biomolecular surface imaging of cells and tissue by SIMS and MALDI mass spectrometry. Anal Chem 78:734–742. doi:10.1021/ac0513111Google Scholar
  130. 130.
    Goto-Inoue N, Hayasaka T, Zaima N, Kashiwagi Y, Yamamoto M, Nakamoto M, Setou M (2010) The detection of glycosphingolipids in brain tissue sections by imaging mass spectrometry using gold nanoparticles. J Am Soc Mass Spectrom 21:1940–1943. doi:10.1016/j.jasms.2010.08.002Google Scholar
  131. 131.
    Baluya D, Garrett T, Yost R (2007) Automated MALDI matrix deposition method with inkjet printing for imaging mass spectrometry. Anal Chem 79:6862–6867. doi:10.1021/ac070958dGoogle Scholar
  132. 132.
    Chen Y, Allegood J, Liu Y, Wang E, Cachón-González B, Cox T, Merrill A, Sullards C (2008) Imaging MALDI mass spectrometry using an oscillating capillary nebulizer matrix coating system and its application to analysis of lipids in brain from a mouse model of Tay-sachs/sandhoff disease. Anal Chem 80:2780–2788Google Scholar
  133. 133.
    Schwamborn K, Krieg R, Reska M, Jakse G, Knuechel R, Wellmann A (2007) Identifying prostate carcinoma by MALDI-imaging. Int J Mol Med 20:155–159Google Scholar
  134. 134.
    Puolitaival S, Burnum K, Cornett D, Caprioli R (2008) Solvent-free matrix dry-coating for MALDI imaging of phospholipids. J Am Soc Mass Spectrom 19:882–886. doi:10.1016/j.jasms.2008.02.013Google Scholar
  135. 135.
    Goodwin R, Scullion P, Maclntyre L, Watson D, Pitt A (2010) Use of a solvent-free dry matrix coating for quantitative matrix-assisted laser desorption ionization imaging of 4-bromophenyl-1,4- diazabicyclo(3,2,2)nonanne-4-carbonxylate in rat brain and quantitative analysis of the drug from laser microdissected tissue regions. Anal Chem 82:3868–3873. doi:10.1021/ac100398yGoogle Scholar
  136. 136.
    Hankin J, Barkley R, Murphy R (2007) Sublimation as a method of matrix application for mass spectrometric imaging. J Am Soc Mass Spectrom 18:1646–1652. doi:10.1016/j.lasms.2007.06.010Google Scholar
  137. 137.
    Taira S, Sugiura Y, Moritake S, Shimma S, Ichiyanagi Y, Setou M (2008) Nanoparticle-assisted laser desorption/ionization based mass imaging with cellular resolution. Anal Chem 80(12):4761–4766. doi:10.1021.ac800081zGoogle Scholar
  138. 138.
    Bouschen W, Spengler B (2007) Artifacts of MALDI sample preparation investigated by high-resolution scanning microprobe matrix-assisted laser desorption/ionization (SMALDI) imaging mass spectrometry. Int J Mass Spectrom 266:129–137. doi:10.1016/j.ijms.2007.07.017Google Scholar
  139. 139.
    Aerni H, Cornett D, Caprioli R (2006) Automated acoustic matrix deposition for MALDI sample preparation. Anal Chem 78:827–834. doi:10.1021/ac051534rGoogle Scholar
  140. 140.
    Rohner T, Staab D, Stoeckli M (2005) MALDI mass spectrometric imaging of biological tissue sections. Mech Ageing Dev 126:177–185. doi:10.1016/j.mad.2004.09.032Google Scholar
  141. 141.
    Stoeckli M, Staab D, Staufenbiel M, Wiederhold K, Signor L (2002) Molecular imaging of amyloid β peptides in mouse brain sections using mass spectrometry. Anal Biochem 311:33–39. doi:10.1016/S0003-2697(02)00386-XGoogle Scholar
  142. 142.
    Klerk L, Broersen A, Fletcher I, Liere R, Heeren R (2007) Extended data analysis strategies for high resolution imaging MS: new method to deal with extremely large image hyperspectral datasets. Int J Mass Spectrom 260:222–236. doi:10.1016/j.ijms.2006.11.014Google Scholar
  143. 143.
    Nemes P, Barton A, Vertes A (2009) Three-dimensional imaging of metabolites in tissue under ambient conditions by laser ablation electrospray ionization mass spectrometry. Anal Chem 81:6668–6675. doi:10.1021/ac900745eGoogle Scholar
  144. 144.
    Chen R, Hui L, Sturm R, Li L (2009) Three dimensional mapping of neuropeptides and lipids in crustacean brain by mass spectral imaging. J Am Soc Mass Spectrom 20:1068–1077. doi:10.1016/j.jasms.2009.01.017Google Scholar
  145. 145.
    Sinha T, Khatib-Shahidi S, Yankeelov T, Mapara K, Ehtesham M, Cornett D, Dawant B, Caprioli R, Gore J (2008) Integration spatially resolved three-dimensional MALDI IMS with in vivo magnetic resonance imaging. Nat Methods 5(1):57–59. doi:10.1038/NMETH1147Google Scholar
  146. 146.
    Norris J, Cornett D, Mobley J, Andersson M, Seeley E, Chaurand P, Caprioli R (2007) Processing MALDI mass spectra to improve mass spectral direct tissue analysis. Int J Mass Spectrom 260:212–221. doi:10.1016/j.ijms.2006.10.005Google Scholar
  147. 147.
    Berman E, Fortson S, Checchi K, Wu L, Felton J, Wu K, Kulp K (2008) Preparation of single cells for imaging/profiling mass spectrometry. J Am Soc Mass Spectrom 19:1230–1236. doi:10.1016/j.jasms.2008.05.006Google Scholar
  148. 148.
    Rubakhin S, Greenough W, Sweedler J (2003) Spatial profiling with MALDI MS: ­distribution of neuropeptides within single neurons. Anal Chem 75:5374–5380. doi:10.1021/ac034498+Google Scholar
  149. 149.
    Zimmerman T, Rubakhin S, Sweedler J (2011) MALDI mass spectrometry imaging of neuronal cell cultures. J Am Soc Mass Spectrom 22:828–836. doi:10.1007/s13361-011-0111-2Google Scholar
  150. 150.
    Yang Y, Xu Y, Straight P, Dorrestein P (2009) Translating metabolic exchange with imaging mass spectrometry. Nat Chem Biol 5(12):885–887. doi:10.1038/nchembio.252Google Scholar
  151. 151.
    Jurchen J, Rubakhin S, Sweedler J (2005) MALDI-MS imaging of features smaller than the size of the laser beam. J Am Soc Mass Spectrom 6:1654–1659. doi:10.1016/j.jasms.2005.06.006Google Scholar
  152. 152.
    Li F, Hsieh Y, Kang L, Sondey C, Lachowicz J, Korfmacher W (2009) MALDI-tandem mass spectrometry imaging of astemizole and its primary metabolites in rat brain sections. Bioanalysis 1(2):299–307. doi:10.4155/BIO.09.27Google Scholar
  153. 153.
    Bouslimani A, Bec N, Glueckmann M, Hirtz C, Larroque C (2010) Matrix-assisted laser desorption/ionization imaging mass spectrometry of oxaliplatin derivatives in heated intraoperative chemotherapy (HIPEC)-like treated rat kidney. Rapid Commun Mass Spectrom 24:415–421. doi:10.1002/rcm.4408Google Scholar
  154. 154.
    Bunch J, Clench M, Richards D (2004) Determination of pharmaceutical compounds in skin by imaging matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 18:3051–3060. doi:10.1002/rcm.1725Google Scholar
  155. 155.
    Stoeckli M, Staab D, Schweitzer A, Gardiner J, Seebach D (2007) Imaging of a β-peptide distribution in whole-body mice sections by MALDI mass spectrometry. J Am Soc Mass Spectrom 18:1921–1924. doi:10.1016/j.jasms.2007.08.005Google Scholar
  156. 156.
    Reyzer M, Hsieh Y, Ng K, Korfmacher W, Caprioli R (2003) Direct analysis of drug candidates in tissue by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 38:1081–1092. doi:10.1002/jms.525Google Scholar
  157. 157.
    Hayasaka T, Goto-Inoue N, Zaima N, Shrivas K, Kashiwagi Y, Yamamoto M, Nakamoto M, Setou M (2010) Imaging mass spectrometry with silver nanoparticles reveals the distribution of fatty acids in mouse retinal sections. J Am Soc Mass Spectrom 21:1446–1454. doi:10.1016/j.jasms.2010.04.005Google Scholar
  158. 158.
    Atkinson S, Loadman P, Sutton C, Patterson L, Clench M (2007) Examination of the distribution of the bioreductive drug AQ4N and its active metabolite AQ4 in solid tumors by imaging matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 21:1271–1276. doi:1002/rcm.2952Google Scholar
  159. 159.
    Earnshaw C, Carolan V, Richards D, Clench M (2010) Direct analysis of pharmaceutical tablet formulations using matrix-assisted laser desorption/ionization mass spectrometry imaging. Rapid Commun Mass Spectrom 24:1665–1672. doi:10.1002/rcm.4525Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Experimental Therapeutics, Pharmaceutical Development CenterThe University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations