Analysis of Illicit Drugs in Human Biological Samples by LC-MSn

  • Manuel SergiEmail author
  • Sabino Napoletano


There are several classes of illegal substances with different psychotropic effects. It is possible to select a biological matrix and a suitable analytical strategy depending on the aim of the analysis and/or on the availability of the sample or on which kind of information is needed. Liquid chromatography–mass spectrometry (LC-MS or LC-MS/MS) has provided a helpful tool in this field especially for hydrophilic, thermolabile, and nonvolatile analytes, which analysis is sometimes critical by gas chromatography–mass spectrometry (GC-MS). Specific guidelines or procedures have been adopted in order to assist the chemist and to direct him/her towards the practical applications, for which a new analytical method is being created, including measures of verification and external assessment.


Solid Phase Extraction Matrix Effect Illicit Drug Atmospheric Pressure Chemical Ionization Oral Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Liberman JM, Cooper SJ (1989) The neuro-pharmacological basis of reward. Oxford University press, OxfordGoogle Scholar
  2. 2.
    Di Chiara G, Acquas E, Carboni E (1991) In: P. Willner and J. Scheel-Kruger (eds) Role of mesolimbic dopamine in the motivational effects of drug: brain dialysis and place preference studies. In: The mesolimbic dopamine system: from motivation to action. John Wiley and Sons Publ., Chichester, UKGoogle Scholar
  3. 3.
    Carboni E, Imperato A, Perezzani L, Di Chiara G (1989) Amphetamine, cocaine, phencyclidine and nomifensine increase extracellular dopamine concentrations preferentially in the nucleus accumbens of freely moving rats. Neuroscience 28(3):653–661Google Scholar
  4. 4.
    Mereu G, Yoon KW, Boi V, Gessa GL, Naes L, Westfall TC (1987) Preferential stimulation of ventral tegmental area dopaminergic neurons by nicotine. Eur J Pharmacol 141(3):395–399. doi: 0014-2999(87)90556-5 [pii]Google Scholar
  5. 5.
    Grace AA (1988) The mesolimbic dopamine system. Ann N Y Acad Sci 537:51–76Google Scholar
  6. 6.
    Geninatti S, Bellavia F, Chieppa G (2001) Contributo alla definizione di nuove droghe. Boll Farmacodip e Alcoolis XXIV (2)Google Scholar
  7. 7.
    Henderson GL (1988) Designer drugs: past history and future prospects. J Forensic Sci 33(2):569–575Google Scholar
  8. 8.
    Gates M, Tschudi G (1952) The synthesis of morphine. J Am Chem Soc 74:1109–1110Google Scholar
  9. 9.
    Chang KJ, Cuatrecasas P (1979) Multiple opiate receptors enkephalins and morphine bind to receptors of different specificity. J Biol Chem 254(8):2610–2618Google Scholar
  10. 10.
    Osborne R, Joel S, Trew D, Slevin M (1990) Morphine and metabolite behavior after different routes of morphine administration: demonstration of the importance of the active metabolite morphine-6-glucuronide. Clin Pharmacol Ther 47:12–19Google Scholar
  11. 11.
    Olson KR (1999) Anfetamine, cocaine, oppioidi, cannabinoidi, allucinogeni. Intossicazioni acute, veleni; veleni, farmaci e droghe. Springer Ed., MilanoGoogle Scholar
  12. 12.
    Warner A, Norman AB (2000) Mechanisms of cocaine hydrolysis and metabolism in vitro and in vivo: a clarification. Ther Drug Monit 22(3):266–270Google Scholar
  13. 13.
    Hearn WL, Rose S, Wagner J, Ciarleglio A, Mash DC (1991) Cocaethylene is more potent than cocaine in mediating lethality. Pharmacol Biochem Behav 32(2):531–533Google Scholar
  14. 14.
    Hardman JG, Limbird LE (1996) Parmacological basis of therapeutics. Ninth Edition edn, MCGrawHillGoogle Scholar
  15. 15.
    Logan BK (2002) Methamphetamine-effects on human performance and behavior. Forensic Sci Rev 14:133–151Google Scholar
  16. 16.
    Battaglia G, Brooks BP, Kulsakdinum C, De Souza EB (1988) Pharmacologic profile of MDMA (3,4-ethylenedioxymethamphetamine) at various brain recognition sites. Eur J Pharmacol 149:159–163Google Scholar
  17. 17.
    Lora-Tamayo C, Tena T, Rodriguez A (1997) Amphetamine derivative related deaths. Forensic Sci Int 85:149–157Google Scholar
  18. 18.
    Wright J, Cho AK, Gal J (1977) The metabolism of amphetamine in vitro by rabbit liver preparations: a comparison of R(−) and S(+) enantiomers. Xenobiotica 7(5):257–266Google Scholar
  19. 19.
    De la Torre R, Farré M, Roset PN, Pizarro N, Abanades S, Segura M, Segura J, Camí J (2004) Human pharmacology of MDMA: pharmacokinetics, metabolism, and disposition. Ther Drug Monit 26:137–144Google Scholar
  20. 20.
    Hoch PH, Cattell JP, Pennes HH (1952) Effects of mescaline and lysergic acid (d-lsd-25). Am J Psychiatry 108:579–584Google Scholar
  21. 21.
    Friedhoff AJ, Goldstein M (1962) New developments in metabolism of mescaline and related amines. N Y Acad Sci 96:5–13Google Scholar
  22. 22.
    Corelick DA, Balster RL (1995) Phencyclidine (PCP). In: Bloom EE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Presi, New YorkGoogle Scholar
  23. 23.
    Anis NA, Berry SC, Burton NR, Lodge D (1983) The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br J Pharmacol 79(2):565–575Google Scholar
  24. 24.
    Uhl S, Schmid P, Schlatter C (1986) Pharmacokinetics of pentachlorophenol in man. Arch Toxicol 58(3):182–186Google Scholar
  25. 25.
    Curran HV, Monaghan L (2001) In and out of the K-hole: a comparison of the acute and residual effects of ketamine in frequent and infrequent ketamine users. Addiction 96:749–760Google Scholar
  26. 26.
    Koob GF (1992) Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13:77–185Google Scholar
  27. 27.
    Aps JK, Martens LC (2005) Review: the physiology of saliva and transfer of drugs into saliva. Forensic Sci Int 150(2–3):119–131. doi: S0379-0738(05)00118-0 [pii] 10.1016/j.forsciint.2004.10.026Google Scholar
  28. 28.
    Wille SM, Raes E, Lillsunde P, Gunnar T, Laloup M, Samyn N, Christophersen AS, Moeller MR, Hammer KP, Verstraete AG (2009) Relationship between oral fluid and blood concentrations of drugs of abuse in drivers suspected of driving under the influence of drugs. Ther Drug Monit 31(4):511–519. doi: 10.1097/FTD.0b013e3181ae46ea Google Scholar
  29. 29.
    Zuidema J, Hold KM, de Boer D, Maes RA (1996) Saliva as a specimen for therapeutic drug monitoring in pharmacies. Pharm World Sci 18(6):193–194Google Scholar
  30. 30.
    Zuidema J, van Ginneken CA (1983) Clearance concept in salivary drug excretion. Part I: theory. Pharm Acta Helv 58(3):88–93Google Scholar
  31. 31.
    Drummer OH (2005) Review: pharmacokinetics of illicit drugs in oral fluid. Forensic Sci Int 150(2–3):133–142. doi: S0379-0738(05)00119-2 [pii] 10.1016/j.forsciint.2004.11.022Google Scholar
  32. 32.
    Hold KM, de Boer D, Zuidema J, Maes RAA (1996) Saliva as an analytical tool in toxicology. Int J Drug Test 1:1–8Google Scholar
  33. 33.
    Toennes SW, Kauert GF, Steinmeyer S, Moeller MR (2005) Driving under the influence of drugs – evaluation of analytical data of drugs in oral fluid, serum and urine, and correlation with impairment symptoms. Forensic Sci Int 152(2–3):149–155. doi: S0379-0738(04)00443-8 [pii] 10.1016/j.forsciint.2004.08.002Google Scholar
  34. 34.
    Lim MD, Dickherber A, Compton CC (2011) Before you analyze a human specimen, think quality, variability, and bias. Anal Chem 83(1):8–13. doi: 10.1021/ac1018974 Google Scholar
  35. 35.
    Verstraete AG (2004) Detection times of drugs of abuse in blood, urine, and oral fluid. Ther Drug Monit 26(2):200–205Google Scholar
  36. 36.
    Mandel ID (1990) The diagnostic uses of saliva. J Oral Pathol Med 19(3):119–125Google Scholar
  37. 37.
    Samyn N, De Boeck G, Verstraete AG (2002) The use of oral fluid and sweat wipes for the detection of drugs of abuse in drivers. J Forensic Sci 47(6):1380–1387Google Scholar
  38. 38.
    Cone EJ (1993) Saliva testing for drugs of abuse. Ann N Y Acad Sci 694:91–127Google Scholar
  39. 39.
    Cone EJ, Kumor K, Thompson LK, Sherer M (1988) Correlation of saliva cocaine levels with plasma levels and with pharmacologic effects after intravenous cocaine administration in human subjects. J Anal Toxicol 12(4):200–206Google Scholar
  40. 40.
    Mancinelli R, Guiducci MS (2002) Procedural aspects and interpretation problems in the analysis of drugs of abuse. Ann Ist Super Sanita 38(3):305–313Google Scholar
  41. 41.
    Gallardo E, Queiroz JA (2008) The role of alternative specimens in toxicological analysis. Biomed Chromatogr 22(8):795–821. doi: 10.1002/bmc.1009 Google Scholar
  42. 42.
    Pragst F, Balikova MA (2006) State of the art in hair analysis for detection of drug and alcohol abuse. Clin Chim Acta 370(1–2):17–49. doi: S0009-8981(06)00122-7 [pii] 10.1016/j.cca.2006.02.019Google Scholar
  43. 43.
    Ribuffo A (1980) Manuale di dermatologia e venerorologia. Lombardo Editore, RomaGoogle Scholar
  44. 44.
    Harkey MR (1993) Anatomy and physiology of hair. Forensic Sci Int 63(1–3):9–18. doi: 0379-0738(93)90255-9 [pii]Google Scholar
  45. 45.
    Henderson GL (1993) Mechanisms of drug incorporation into hair. Forensic Sci Int 63(1–3):19–29. doi: 0379-0738(93)90256-A [pii]Google Scholar
  46. 46.
    Rothe M, Pragst F, Thor S, Hunger J (1997) Effect of pigmentation on the drug deposition in hair of grey-haired subjects. Forensic Sci Int 84(1–3):53–60Google Scholar
  47. 47.
    Rollins DE, Wilkins DG, Krueger GG, Augsburger MP, Mizuno A, O’Neal C, Borges CR, Slawson MH (2003) The effect of hair color on the incorporation of codeine into human hair. J Anal Toxicol 27(8):545–551Google Scholar
  48. 48.
    Kronstrand R, Forstberg-Peterson S, Kagedal B, Ahlner J, Larson G (1999) Codeine concentration in hair after oral administration is dependent on melanin content. Clin Chem 45(9):1485–1494Google Scholar
  49. 49.
    Potsch L, Skopp G, Moeller MR (1997) Influence of pigmentation on the codeine content of hair fibers in guinea pigs. J Forensic Sci 42(6):1095–1098Google Scholar
  50. 50.
    Claffey DJ, Stout PR, Ruth JA (2001) 3H-nicotine, 3H-flunitrazepam, and 3H-cocaine incorporation into melanin: a model for the examination of drug–melanin interactions. J Anal Toxicol 25(7):607–611Google Scholar
  51. 51.
    Wu YH, Lin KL, Chen SC, Chang YZ (2008) Simultaneous quantitative determination of amphetamines, ketamine, opiates and metabolites in human hair by gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 22(6):887–897Google Scholar
  52. 52.
    Peters FT (2011) Recent advances of liquid chromatography-(tandem) mass spectrometry in clinical and forensic toxicology. Clin Biochem 44(1):54–65. doi: S0009-9120(10)00348-6 [pii] 10.1016/j.clinbiochem.2010.08.008Google Scholar
  53. 53.
    Jenkins KM, Young MS, Mallet CR, Elian AA (2004) Mixed-mode solid-phase extraction procedures for the determination of MDMA and metabolites in urine using LC-MS, LC-UV, or GC-NPD. J Anal Toxicol 28(1):50–58Google Scholar
  54. 54.
    Stout PR, Bynum ND, Mitchell JM, Baylor MR, Ropero-Miller JD (2009) A comparison of the validity of gas chromatography–mass spectrometry and liquid chromatography–tandem mass spectrometry analysis of urine samples for morphine, codeine, 6-acetylmorphine, and benzoylecgonine. J Anal Toxicol 33(8):398–408Google Scholar
  55. 55.
    Couchman L, Morgan PE (2011) LC-MS in analytical toxicology: some practical considerations. Biomed Chromatogr 25(1–2):100–123. doi: 10.1002/bmc.1566 Google Scholar
  56. 56.
    SOFT, AAFS (2006) Forensic toxicology laboratory guidelines. Last access 10 May 2012
  57. 57.
    EC (2002) Consolidated guidelines for the implementation of decision 2002/657/EC. Last access 10 May 2012
  58. 58.
    FDA (2001) Guidance for industry: bioanalytical method validation. Last access 10 May 2012
  59. 59.
    EMEA (1995) ICH Topic Q 2 (R1) Validation of analytical procedures: text and methodology.
  60. 60.
    Peters FT, Drummer OH, Musshoff F (2007) Validation of new methods. Forensic Sci Int 165(2–3):216–224. doi: S0379-0738(06)00323-9 [pii] 10.1016/j.forsciint.2006.05.021Google Scholar
  61. 61.
    Maurer HH (2007) Current role of liquid chromatography–mass spectrometry in clinical and forensic toxicology. Anal Bioanal Chem 388(7):1315–1325. doi: 10.1007/s00216-007-1248-5 Google Scholar
  62. 62.
    Marchi I, Rudaz S, Veuthey JL (2009) Sample preparation development and matrix effects evaluation for multianalyte determination in urine. J Pharm Biomed Anal 49(2):459–467. doi: S0731-7085(08)00639-0 [pii] 10.1016/j.jpba.2008.11.040Google Scholar
  63. 63.
    Dams R, Huestis MA, Lambert WE, Murphy CM (2003) Matrix effect in bio-analysis of illicit drugs with LC-MS/MS: influence of ionization type, sample preparation, and biofluid. J Am Soc Mass Spectrom 14(11):1290–1294. doi: S1044030503005749 [pii]Google Scholar
  64. 64.
    Matuszewski BK, Constanzer ML, Chavez-Eng CM (2003) Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem 75(13):3019–3030Google Scholar
  65. 65.
    Bonfiglio R, King RC, Olah TV, Merkle K (1999) The effects of sample preparation methods on the variability of the electrospray ionization response for model drug compounds. Rapid Commun Mass Spectrom 13(12):1175–1185. doi:10.1002/(SICI)1097-0231(19990630)13:12<1175::AID-RCM639>3.0.CO;2-0 [pii] 10.1002/(SICI)1097-0231(19990630)13:12<1175::AID-RCM639> 3.0.CO;2-0Google Scholar
  66. 66.
    Sergi M, Compagnone D, Curini R, D’Ascenzo G, Del Carlo M, Napoletano S, Risoluti R (2010) Micro-solid phase extraction coupled with high-performance liquid chromatography–tandem mass spectrometry for the determination of stimulants, hallucinogens, ketamine and phencyclidine in oral fluids. Anal Chim Acta 675(2):132–137. doi: 10.1016/j.aca.2010.07.011 Google Scholar
  67. 67.
    Napoletano S, Montesano C, Compagnone D, Curini R, D’Ascenzo G, Roccia C, Sergi M (2011) Determination of illicit drugs in urine and plasma by micro-SPE followed by HPLC–MS/MS. Chromatographia. doi: 10.1007/s10337-011-2156-6
  68. 68.
    ISO/IEC (2005) ISO/IEC 17025:2005. Incorporating Corrigendum no. 1. Published under the authority of the Standards Policy and Strategy Committee on 29 June 2005.Google Scholar
  69. 69.
    Drolc A, Cotman M, Ros M (2005) Integration of metrological principles in a proficiency-testing scheme in the field of water analysis. Anal Bioanal Chem 382(5):1311–1319. doi: 10.1007/s00216-005-3264-7 Google Scholar
  70. 70.
    Maralikova B, Weinmann W (2004) Confirmatory analysis for drugs of abuse in plasma and urine by high-performance liquid chromatography–tandem mass spectrometry with respect to criteria for compound identification. J Chromatogr B Analyt Technol Biomed Life Sci 811(1):21–30. doi: 10.1016/j.jchromb.2004.04.039 S1570-0232(04)00642-7 [pii]Google Scholar
  71. 71.
    Sauvage FL, Gaulier JM, Lachatre G, Marquet P (2008) Pitfalls and prevention strategies for liquid chromatography–tandem mass spectrometry in the selected reaction-monitoring mode for drug analysis. Clin Chem 54(9):1519–1527. doi: clinchem.2008.105478 [pii] 10.1373/clinchem.2008.105478Google Scholar
  72. 72.
    Arpino PJ (1982) On-line liquid chromatography/mass spectrometry? An odd couple! Trends Anal Chem 1(7):154–158. doi: 10.1016/0165-9936(82)80049-6Google Scholar
  73. 73.
    Polettini A (2006) Applications of LC-MS in toxicology. Pharmaceutical Press, LondonGoogle Scholar
  74. 74.
    Watson JT, Sparkman OD (2007) Introduction to mass spectrometry: instrumentation, applications and strategies for data interpretation, 4th edn. Wiley-Blackwell, ChichesterGoogle Scholar
  75. 75.
    Gallagher RT, Balogh MP, Davey P, Jackson MR, Sinclair I, Southern LJ (2003) Combined electrospray ionization-atmospheric pressure chemical ionization source for use in high-throughput LC-MS applications. Anal Chem 75(4):973–977Google Scholar
  76. 76.
    Chena BH, Liu JT, Chena WX, Chena HM, CH L (2008) A general approach to the screening and confirmation of tryptamines and phenethylamines by mass spectral fragmentation. Talanta 74:512–517Google Scholar
  77. 77.
    Wang PP, Bartlett MG (1998) Collision-induced dissociation mass spectra of cocaine, and its metabolites and pyrolysis products. J Mass Spectrom 33:961–967Google Scholar
  78. 78.
    Al-Sayah MA, Rizos P, Antonucci V, Wu N (2008) High throughput screening of active pharmaceutical ingredients by UPLC. J Sep Sci 31(12):2167–2172. doi: 10.1002/jssc.200700594 Google Scholar
  79. 79.
    Wren SA, Tchelitcheff P (2006) Use of ultra-performance liquid chromatography in pharmaceutical development. J Chromatogr A 1119(1–2):140–146. doi: S0021-9673(06)00385-2 [pii] 10.1016/j.chroma.2006.02.052Google Scholar
  80. 80.
    Nguyen DT, Guillarme D, Rudaz S, Veuthey JL (2006) Fast analysis in liquid chromatography using small particle size and high pressure. J Sep Sci 29(12):1836–1848Google Scholar
  81. 81.
    Guillarme D, Ruta J, Rudaz S, Veuthey JL (2010) New trends in fast and high-resolution liquid chromatography: a critical comparison of existing approaches. Anal Bioanal Chem 397(3):1069–1082. doi: 10.1007/s00216-009-3305-8 Google Scholar
  82. 82.
    Guillarme D, Heinisch S, Rocca JL (2004) Effect of temperature in reversed phase liquid chromatography. J Chromatogr A 1052(1–2):39–51Google Scholar
  83. 83.
    van Nederkassel AM, Aerts A, Dierick A, Massart DL, Vander Heyden Y (2003) Fast separations on monolithic silica columns: method transfer, robustness and column ageing for some case studies. J Pharm Biomed Anal 32(2):233–249. doi: S0731708503001316 [pii]Google Scholar
  84. 84.
    Hjerten S, Liao JL, Zhang R (1989) High-performance liquid-chromatography on continuous polymer beds. J Chromatogr 473(1):273–275Google Scholar
  85. 85.
    Kirkland JJ (1992) Superficially porous silica microspheres for the fast high-performance liquid-chromatography of macromolecules. Anal Chem 64(11):1239–1245Google Scholar
  86. 86.
    Fekete S, Fekete J, Ganzler K (2009) Characterization of new types of stationary phases for fast liquid chromatographic applications. J Pharm Biomed Anal 50(5):703–709. doi: S0731-7085(09)00351-3 [pii] 10.1016/j.jpba.2009.05.039Google Scholar
  87. 87.
    Cavazzini A, Gritti F, Kaczmarski K, Marchetti N, Guiochon G (2007) Mass-transfer kinetics in a shell packing material for chromatography. Anal Chem 79(15):5972–5979. doi: 10.1021/ac070571aGoogle Scholar
  88. 88.
    Gritti F, Cavazzini A, Marchetti N, Guiochon G (2007) Comparison between the efficiencies of columns packed with fully and partially porous C18-bonded silica materials. J Chromatogr A 1157(1–2):289–303. doi: S0021-9673(07)00878-3 [pii] 10.1016/j.chroma.2007.05.030Google Scholar
  89. 89.
    Mallett DN, Ramirez-Molina C (2009) The use of partially porous particle columns for the routine, generic analysis of biological samples for pharmacokinetic studies in drug discovery by reversed-phase ultra-high performance liquid chromatography–tandem mass spectrometry. J Pharm Biomed Anal 49(1):100–107. doi: S0731-7085(08)00548-7 [pii] 10.1016/j.jpba.2008.09.041Google Scholar
  90. 90.
    Stokvis E, Rosing H, Beijnen JH (2005) Stable isotopically labeled internal standards in quantitative bioanalysis using liquid chromatography/mass spectrometry: necessity or not? Rapid Commun Mass Spectrom 19(3):401–407. doi: 10.1002/Rcm.1790Google Scholar
  91. 91.
    Lindegardh N, Annerberg A, White NJ, Day NP (2008) Development and validation of a liquid chromatographic-tandem mass spectrometric method for determination of piperaquine in plasma stable isotope labeled internal standard does not always compensate for matrix effects. J Chromatogr B Analyt Technol Biomed Life Sci 862(1–2):227–236. doi: S1570-0232(07)00874-4 [pii] 10.1016/j.jchromb.2007.12.011Google Scholar
  92. 92.
    Wang S, Cyronak M, Yang E (2007) Does a stable isotopically labeled internal standard always correct analyte response? A matrix effect study on a LC/MS/MS method for the determination of carvedilol enantiomers in human plasma. J Pharm Biomed 43(2):701–707. doi: 10.1016/j.jpba.2006.08.010Google Scholar
  93. 93.
    Sergi M, Bafile E, Compagnone D, Curini R, D’Ascenzo G, Romolo FS (2009) Multiclass analysis of illicit drugs in plasma and oral fluids by LC-MS/MS. Anal Bioanal Chem 393(2):709–718. doi: 10.1007/s00216-008-2456-3 Google Scholar
  94. 94.
    Blanchard J (1981) Evaluation of the relative efficacy of various techniques for deproteinizing plasma samples prior to high-performance liquid chromatographic analysis. J Chromatogr 226(2):455–460Google Scholar
  95. 95.
    Bouzas NF, Dresen S, Munz B, Weinmann W (2009) Determination of basic drugs of abuse in human serum by online extraction and LC-MS/MS. Anal Bioanal Chem 395(8):2499–2507. doi: 10.1007/s00216-009-3036-x Google Scholar
  96. 96.
    Kirchherr H, Kuhn-Velten WN (2006) Quantitative determination of forty-eight antidepressants and antipsychotics in human serum by HPLC tandem mass spectrometry: a multi-level, single-sample approach. J Chromatogr B Analyt Technol Biomed Life Sci 843(1):100–113. doi: S1570-0232(06)00445-4 [pii] 10.1016/j.jchromb.2006.05.031Google Scholar
  97. 97.
    Wille SM, Lambert WE (2007) Recent developments in extraction procedures relevant to analytical toxicology. Anal Bioanal Chem 388(7):1381–1391. doi: 10.1007/s00216-007-1294-z Google Scholar
  98. 98.
    Gottardo R, Polettini A, Sorio D, Pascali JP, Bortolotti F, Liotta E, Tagliaro F (2008) Capillary zone electrophoresis (CZE) coupled to time-of-flight mass spectrometry (TOF-MS) applied to the analysis of illicit and controlled drugs in blood. Electrophoresis 29(19):4078–4087. doi: 10.1002/elps.200800087 Google Scholar
  99. 99.
    Couchman L, Morgan PE, Flanagan RJ (2010) Basic drug analysis by strong cation-exchange liquid chromatography–tandem mass spectrometry: simultaneous analysis of amisulpride, and of metamfetamine and amfetamine in serum/plasma. Biomed Chromatogr. doi: 10.1002/bmc.1530
  100. 100.
    Schellen A, Ooms B, van de Lagemaat D, Vreeken R, van Dongen WD (2003) Generic solid phase extraction-liquid chromatography–tandem mass spectrometry method for fast determination of drugs in biological fluids. J Chromatogr B Analyt Technol Biomed Life Sci 788(2):251–259. doi: S1570023202010139 [pii]Google Scholar
  101. 101.
    Yawney J, Treacy S, Hindmarsh KW, Burczynski FJ (2002) A general screening method for acidic, neutral, and basic drugs in whole blood using the Oasis MCX column. J Anal Toxicol 26(6):325–332Google Scholar
  102. 102.
    Decaestecker TN, Coopman EM, Van Peteghem CH, Van Bocxlaer JF (2003) Suitability testing of commercial solid-phase extraction sorbents for sample clean-up in systematic toxicological analysis using liquid chromatography-(tandem) mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 789(1):19–25. doi: S1570023203002083 [pii]Google Scholar
  103. 103.
    Bjork MK, Nielsen MK, Markussen LO, Klinke HB, Linnet K (2010) Determination of 19 drugs of abuse and metabolites in whole blood by high-performance liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 396(7):2393–2401. doi: 10.1007/s00216-009-3268-9 Google Scholar
  104. 104.
    Jagerdeo E, Montgornery MA, Sibum M, Sasaki TA, LeBeau MA (2008) Rapid analysis of cocaine and metabolites in urine using a completely automated solid-phase extraction-high-performance liquid chromatography–tandem mass spectrometry method. J Anal Toxicol 32(8):570–576Google Scholar
  105. 105.
    Pujadas M, Pichini S, Civit E, Santamarina E, Perez K, de la Torre R (2007) A simple and reliable procedure for the determination of psychoactive drugs in oral fluid by gas chromatography–mass spectrometry. J Pharm Biomed Anal 44(2):594–601. doi: 10.1016/j.jpba.2007.02.022 Google Scholar
  106. 106.
    Spiehler V (2004) Drugs in saliva. In: Anthony C. Moffat, M. David Osselton, Widdop B (eds) Clarke’s analysis of drugs and poisons, 3rd edn. Pharmaceutical Press, LondonGoogle Scholar
  107. 107.
    Langel K, Engblom C, Pehrsson A, Gunnar T, Ariniemi K, Lillsunde P (2008) Drug testing in oral fluid-evaluation of sample collection devices. J Anal Toxicol 32(6):393–401Google Scholar
  108. 108.
    Maurer HH (2005) Advances in analytical toxicology: the current role of liquid chromatography–mass spectrometry in drug quantification in blood and oral fluid. Anal Bioanal Chem 381(1):110–118. doi: 10.1007/s00216-004-2774-z Google Scholar
  109. 109.
    Simoes SS, Ajenjo AC, Franco JM, Vieira DN, Dias MJ (2009) Liquid chromatography/tandem mass spectrometry for the qualitative and quantitative analysis of illicit drugs and medicines in preserved oral fluid. Rapid Commun Mass Spectrom 23(10):1451–1460. doi: 10.1002/rcm.4020 Google Scholar
  110. 110.
    Fernandez P, Morales L, Vazquez C, Lago M, Bermejo AM (2008) Comparison of two extraction procedures for determination of drugs of abuse in human saliva by high-performance liquid chromatography. J Appl Toxicol 28(8):998–1003. doi: 10.1002/jat.1365 Google Scholar
  111. 111.
    Bosker WM, Huestis MA (2009) Oral fluid testing for drugs of abuse. Clin Chem 55(11):1910–1931Google Scholar
  112. 112.
    Wood M, Laloup M, Ramirez Fernandez Mdel M, Jenkins KM, Young MS, Ramaekers JG, De Boeck G, Samyn N (2005) Quantitative analysis of multiple illicit drugs in preserved oral fluid by solid-phase extraction and liquid chromatography–tandem mass spectrometry. Forensic Sci Int 150(2–3):227–238. doi: S0379-0738(05)00131-3 [pii] 10.1016/j.forsciint.2004.11.027Google Scholar
  113. 113.
    Badawi N, Simonsen KW, Steentoft A, Bernhoft IM, Linnet K (2009) Simultaneous screening and quantification of 29 drugs of abuse in oral fluid by solid-phase extraction and ultraperformance LC-MS/MS. Clin Chem 55(11):2004–2018. doi: clinchem.2008.122341 [pii] 10.1373/clinchem.2008.122341Google Scholar
  114. 114.
    Wang IT, Feng YT, Chen CY (2010) Determination of 17 illicit drugs in oral fluid using isotope dilution ultra-high performance liquid chromatography/tandem mass spectrometry with three atmospheric pressure ionizations. J Chromatogr B Analyt Technol Biomed Life Sci 878(30):3095–3105. doi: 10.1016/j.jchromb.2010.09.014 Google Scholar
  115. 115.
    Kala SV, Harris SE, Freijo TD, Gerlich S (2008) Validation of analysis of amphetamines, opiates, phencyclidine, cocaine, and benzoylecgonine in oral fluids by liquid chromatography–tandem mass spectrometry. J Anal Toxicol 32(8):605–611Google Scholar
  116. 116.
    Taylor K, Elliott S (2009) A validated hybrid quadrupole linear ion-trap LC-MS method for the analysis of morphine and morphine glucuronides applied to opiate deaths. Forensic Sci Int 187(1–3):34–41. doi: S0379-0738(09)00085-1 [pii] 10.1016/j.forsciint.2009.02.011Google Scholar
  117. 117.
    Svensson JO, Andersson M, Gustavsson E, Beck O (2007) Electrospray LC-MS method with solid-phase extraction for accurate determination of morphine-, codeine-, and ethylmorphine-glucuronides and 6-acetylmorphine in urine. J Anal Toxicol 31(2):81–86Google Scholar
  118. 118.
    Gustavsson E, Andersson M, Stephanson N, Beck O (2007) Validation of direct injection electrospray LC-MS/MS for confirmation of opiates in urine drug testing. J Mass Spectrom 42(7):881–889. doi: 10.1002/jms.1219 Google Scholar
  119. 119.
    Andersson M, Gustavsson E, Stephanson N, Beck O (2008) Direct injection LC–MS/MS method for identification and quantification of amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine and 3,4-methylenedioxymethamphetamine in urine drug testing. J Chromatogr B Analyt Technol Biomed Life Sci 861:22–28.  10.1016/j.jchromb.2007.11.025 Google Scholar
  120. 120.
    Eichhorst JC, Etter ML, Rousseaux N, Lehotay DC (2009) Drugs of abuse testing by tandem mass spectrometry: a rapid, simple method to replace immunoassays. Clin Biochem 42(15):1531–1542. doi: S0009-9120(09)00322-1 [pii] 10.1016/j.clinbiochem.2009.07.019Google Scholar
  121. 121.
    Maquille A, Guillarme D, Rudaz S, Veuthey JL (2009) High-throughput screening of drugs of abuse in urine by supported liquid–liquid extraction and UHPLC coupled to tandem MS. Chromatographia 70(9–10):1373–1380. doi: 10.1365/s10337-009-1337-z Google Scholar
  122. 122.
    Breitenbucher JG, Arienti KL, McClure KJ (2001) Scope and limitations of solid-supported liquid-liquid extraction for the high-throughput purification of compound libraries. J Comb Chem 3(6):528–533. doi: cc010039f [pii]Google Scholar
  123. 123.
    Fernandez MDR, Wille SMR, Samyn N, Wood M, Lopez-Rivadulla M, De Boeck G (2009) On-line solid-phase extraction combined with liquid chromatography–tandem mass spectrometry for high throughput analysis of 11-nor-Delta(9)-tetrahydrocannabinol-9-carboxylic acid in urine. J Chromatogr B 877(22):2153–2157. doi: 10.1016/j.jchromb.2009.04.047 Google Scholar
  124. 124.
    Mercolini L, Musenga A, Comin I, Baccini C, Conti M, Raggi MA (2008) Determination of plasma and urine levels of Delta9-tetrahydrocannabinol and its main metabolite by liquid chromatography after solid-phase extraction. J Pharm Biomed Anal 47(1):156–163. doi: S0731-7085(07)00779-0 [pii] 10.1016/j.jpba.2007.12.023Google Scholar
  125. 125.
    Robandt PV, Klette KL, Sibum M (2009) Automated solid-phase extraction-liquid chromatography–tandem mass spectrometry analysis of 11-nor-Delta9-tetrahydrocannabinol-9-carboxylic acid in human urine specimens: application to a high-throughput urine analysis laboratory. J Anal Toxicol 33(8):456–460Google Scholar
  126. 126.
    Berg T, Lundanes E, Christophersen AS, Strand DH (2009) Determination of opiates and cocaine in urine by high pH mobile phase reversed phase UPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 877(4):421–432. doi: S1570-0232(08)00951-3 [pii] 10.1016/j.jchromb.2008.12.052Google Scholar
  127. 127.
    Aturki Z, D’Orazio G, Fanali S, Rocco A, Bortolotti F, Gottardo R, Tagliaro F (2009) Capillary electrochromatographic separation of illicit drugs employing a cyano stationary phase. J Chromatogr A 1216(17):3652–3659. doi: S0021-9673(08)02202-4 [pii] 10.1016/j.chroma.2008.12.041Google Scholar
  128. 128.
    Ellison ST, Brewer WE, Morgan SL (2009) Comprehensive analysis of drugs of abuse in urine using disposable pipette extraction. J Anal Toxicol 33(7):356–365Google Scholar
  129. 129.
    Bush DM (2008) The U.S. mandatory guidelines for federal workplace drug testing programs: current status and future considerations. Forensic Sci Int 174(2–3):111–119. doi: 10.1016/j.forsciint.2007.03.008 Google Scholar
  130. 130.
    SOHT (2004) Recommendations for hair testing in forensic cases. Forensic Sci Int 145:83–84Google Scholar
  131. 131.
    UNDPC (2001) Guidelines, hair, sweat and saliva. UN, New YorkGoogle Scholar
  132. 132.
    Musshoff F, Madea B (2007) Analytical pitfalls in hair testing. Anal Bioanal Chem 388(7):1475–1494. doi: 10.1007/s00216-007-1288-x Google Scholar
  133. 133.
    Bucelli F, Fratini A, Bavazzano P, Comodo N (2009) Quantification of drugs of abuse and some stimulants in hair samples by liquid chromatography–electrospray ionization ion trap mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 877(31):3931–3936. doi: S1570-0232(09)00671-0 [pii] 10.1016/j.jchromb.2009.09.026Google Scholar
  134. 134.
    Dwivedi P, Hill HH Jr (2008) A rapid analytical method for hair analysis using ambient pressure ion mobility mass spectrometry with electrospray ionization (ESI-IMMS). Int J Ion Mobil Spec 11:61–69Google Scholar
  135. 135.
    Hegstad S, Khiabani HZ, Kristoffersen L, Kunoe N, Lobmaier PP, Christophersen AS (2008) Drug screening of hair by liquid chromatography–tandem mass spectrometry. J Anal Toxicol 32(5):364–372Google Scholar
  136. 136.
    Tabernero MJ, Felli ML, Bermejo AM, Chiarotti M (2009) Determination of ketamine and amphetamines in hair by LC/MS/MS. Anal Bioanal Chem 395(8):2547–2557. doi: 10.1007/s00216-009-3163-4 Google Scholar
  137. 137.
    Klys M, Rojek S, Kulikowska J, Bozek E, Scislowski M (2007) Usefulness of multi-parameter opiates-amphetamines-cocainics analysis in hair of drug users for the evaluation of an abuse profile by means of LC-APCI-MS-MS. J Chromatogr B Analyt Technol Biomed Life Sci 854(1–2):299–307. doi: S1570-0232(07)00337-6 [pii] 10.1016/j.jchromb.2007.04.040Google Scholar
  138. 138.
    Xiang P, Shen M, Zhuo X (2006) Hair analysis for ketamine and its metabolites. Forensic Sci Int 162(1–3):131–134. doi: S0379-0738(06)00389-6 [pii] 10.1016/j.forsciint.2006.05.046Google Scholar
  139. 139.
    Hoelzle C, Scheufler F, Uhl M, Sachs H, Thieme D (2008) Application of discriminant analysis to differentiate between incorporation of cocaine and its congeners into hair and contamination. Forensic Sci Int 176(1):13–18. doi: S0379-0738(07)00750-5 [pii] 10.1016/j.forsciint.2007.07.020Google Scholar
  140. 140.
    Fernandez P, Lago M, Lorenzo RA, Carro AM, Bermejo AM, Tabernero MJ (2009) Optimization of a rapid microwave-assisted extraction method for the simultaneous determination of opiates, cocaine and their metabolites in human hair. J Chromatogr B Analyt Technol Biomed Life Sci 877(18–19):1743–1750. doi: S1570-0232(09)00305-5 [pii].1016/j.jchromb.2009.04.035Google Scholar
  141. 141.
    Huang DK, Liu C, Huang MK, Chien CS (2009) Simultaneous determination of morphine, codeine, 6-acetylmorphine, cocaine and benzoylecgonine in hair by liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun Mass Spectrom 23(7):957–962. doi: 10.1002/rcm.3955 Google Scholar
  142. 142.
    Quintela O, Lendoiro E, Cruz A, de Castro A, Quevedo A, Jurado C, Lopez-Rivadulla M (2010) Hydrophilic interaction liquid chromatography–tandem mass spectrometry (HILIC-MS/MS) determination of cocaine and its metabolites benzoylecgonine, ecgonine methyl ester, and cocaethylene in hair samples. Anal Bioanal Chem 396(5):1703–1712. doi: 10.1007/s00216-009-3393-5 Google Scholar
  143. 143.
    Yazdi AS, Es’haghi Z (2005) Surfactant enhanced liquid-phase microextraction of basic drugs of abuse in hair combined with high performance liquid chromatography. J Chromatogr A 1094:1–8Google Scholar
  144. 144.
    Miguez-Framil M, Moreda-Pineiro A, Bermejo-Barrera P, Alvarez-Freire I, Tabernero MJ, Bermejo AM (2010) Matrix solid-phase dispersion on column clean-up/pre-concentration as a novel approach for fast isolation of abuse drugs from human hair. J Chromatogr A 1217(41):6342–6349. doi: S0021-9673(10)01105-2 [pii] 10.1016/j.chroma.2010.08.034Google Scholar
  145. 145.
    Nielsen MK, Johansen SS, Dalsgaard PW, Linnet K (2010) Simultaneous screening and quantification of 52 common pharmaceuticals and drugs of abuse in hair using UPLC-TOF-MS. Forensic Sci Int 196(1–3):85–92. doi: S0379-0738(09)00528-3 [pii] 10.1016/j.forsciint.2009.12.027Google Scholar
  146. 146.
    Nishida M, Yashiki M, Namera A, Kimura K (2006) Single hair analysis of methamphetamine and amphetamine by solid phase microextraction coupled with in matrix derivatization. J Chromatogr B Analyt Technol Biomed Life Sci 842(2):106–110. doi: S1570-0232(06)00580-0 [pii] 10.1016/j.jchromb.2006.07.039Google Scholar
  147. 147.
    Kronstrand R, Nystrom I, Strandberg J, Druid H (2004) Screening for drugs of abuse in hair with ion spray LC-MS-MS. Forensic Sci Int 145(2–3):183–190. doi: 10.1016/j.forsciint.2004.04.034 S037907380400249X [pii]Google Scholar
  148. 148.
    Pujol ML, Cirimele V, Tritsch PJ, Villain M, Kintz P (2007) Evaluation of the IDS One-Step ELISA kits for the detection of illicit drugs in hair. Forensic Sci Int 170(2–3):189–192. doi: S0379-0738(07)00549-X [pii] 10.1016/j.forsciint.2007.02.032Google Scholar
  149. 149.
    Lee S, Park Y, Yang W, Han E, Choe S, Lim M, Chung H (2009) Estimation of the measurement uncertainty of methamphetamine and amphetamine in hair analysis. Forensic Sci Int 185(1–3):59–66. doi: S0379-0738(08)00502-1 [pii] 10.1016/j.forsciint.2008.12.012Google Scholar
  150. 150.
    Lee S, Han E, Park Y, Choi H, Chung H (2009) Distribution of methamphetamine and amphetamine in drug abusers’ head hair. Forensic Sci Int 190(1–3):16–18. doi: S0379-0738(09)00208-4 [pii] 10.1016/j.forsciint.2009.05.004Google Scholar
  151. 151.
    Barroso M, Dias M, Vieira DN, Queiroz JA, Lopez-Rivadulla M (2008) Development and validation of an analytical method for the simultaneous determination of cocaine and its main metabolite, benzoylecgonine, in human hair by gas chromatography/mass spectrometry. Rapid Commun Mass Spectrom 22(20):3320–3326. doi: 10.1002/rcm.3738 Google Scholar
  152. 152.
    Gottardo R, Bortolotti F, De Paoli G, Pascali JP, Miksik I, Tagliaro F (2007) Hair analysis for illicit drugs by using capillary zone electrophoresis–electrospray ionization–ion trap mass spectrometry. J Chromatogr A 1159(1–2):185–189. doi: S0021-9673(07)00039-8 [pii] 10.1016/j.chroma.2007.01.011Google Scholar
  153. 153.
    Lin YH, Lee MR, Lee RJ, Ko WK, Wu SM (2007) Hair analysis for methamphetamine, ketamine, morphine and codeine by cation-selective exhaustive injection and sweeping micellar electrokinetic chromatography. J Chromatogr A 1145(1–2):234–240. doi: S0021-9673(07)00094-5 [pii] 10.1016/j.chroma.2007.01.054Google Scholar
  154. 154.
    Romolo FS, Rotolo MC, Palmi I, Pacifici R, Lopez A (2003) Optimized conditions for simultaneous determination of opiates, cocaine and benzoylecgonine in hair samples by GC-MS. Forensic Sci Int 138(1–3):17–26. doi: S0379073803003657 [pii]Google Scholar
  155. 155.
    Hill V, Cairns T, Schaffer M (2008) Hair analysis for cocaine: factors in laboratory contamination studies and their relevance to proficiency sample preparation and hair testing practices. Forensic Sci Int 176(1):23–33. doi: S0379-0738(07)00752-9 [pii] 10.1016/j.forsciint.2007.08.011Google Scholar
  156. 156.
    Sergi M, Gentili A, Perret D, Marchese S, Materazzi S, Curini R (2007) MSPD extraction of sulphonamides from meat followed by LC tandem MS determination. Chromatographia 65(11–12):757–761. doi: 10.1365/s10337-007-0245-3 Google Scholar
  157. 157.
    Capriotti AL, Cavaliere C, Giansanti P, Gubbiotti R, Samperi R, Lagana A (2010) Recent developments in matrix solid-phase dispersion extraction. J Chromatogr A 1217(16):2521–2532. doi: 10.1016/j.chroma.2010.01.030 Google Scholar
  158. 158.
    Miyaguchi H, Inoue H (2011) Determination of amphetamine-type stimulants, cocaine and ketamine in human hair by liquid chromatography/linear ion trap-Orbitrap hybrid mass spectrometry. Analyst 136(17):3503–3511. doi: 10.1039/c0an00850h Google Scholar
  159. 159.
    Meng P, Zhu D, He H, Wang Y, Guo F, Zhang L (2009) Determination of amphetamines in hair by GC/MS after small-volume liquid extraction and microwave derivatization. Anal Sci 25(9):1115–1118. doi: JST.JSTAGE/analsci/25.1115 [pii]Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Food ScienceUniversity of TeramoMosciano S.AItaly
  2. 2.Department of ChemistrySapienza University of RomeRomaItaly

Personalised recommendations