Fourier Transform Spectroscopy and the Study of the Microbial Response to Stress

  • Avelino Alvarez-Ordóñez
  • Miguel Prieto
Part of the SpringerBriefs in Food, Health, and Nutrition book series (BRIEFSFOOD)


A number of research articles have assessed the structural modifications occurring in food-associated microorganisms in response to environmental stress conditions. Some of these articles have studied in depth the mechanisms of death induction resulting from vegetative cell exposure to different food processing technologies, antimicrobial compounds, and adverse environmental conditions, with most of the studies focused on their effects on the cytoplasmic membrane composition and structure. The successful application of Fourier transform (FT-IR) spectroscopy in this field has led to more ambitious studies demonstrating the capacity to detect and quantify injured vegetative cells in food products and to check the efficacy of food processing treatments. Furthermore, several authors have recently shown FT-IR spectroscopy is also a suitable method to evaluate stress-induced changes in spore components, suggesting the use of this technology to monitor the efficacy of sterilization techniques in inactivation of spore-forming microorganisms. Other research articles have emphasized the ability of FT-IR spectroscopy to study dynamic changes in bacterial populations and to discriminate between different phenotypes of a given bacterial strain. This offers the possibility of identifying phenotypes relevant for food safety, i.e., those showing an extremely high resistance to food processing systems and harsh environments, such as the phenotypes resulting from bacterial adaptive tolerance responses.


Membrane Fluidity Antimicrobial Compound Dipicolinic Acid Selenium Species Tolerance Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Al-Qadiri, H.M., Al-Alami, N.I., Al-Holy, M.A., Rasco, B.A., 2008a. Using Fourier transform infrared (FT-IR) absorbance spectroscopy and multivariate analysis to study the effect of chlorine-induced bacterial injury in water. J. Agric. Food Chem. 56, 8992-8997.CrossRefGoogle Scholar
  2. Al-Qadiri, H.M., Lin, M., Al-Holy, M.A., Cavinato, A.G., Rasco, B.A., 2008b. Detection of sublethal thermal injury in Salmonella enterica serotype typhimurium and Listeria monocytogenes using Fourier transform infrared (FT-IR) spectroscopy (4000 to 600 cm(-1)). J. Food Sci. 73, M54-M61.CrossRefGoogle Scholar
  3. Alvarez-Ordoñez, A., Fernandez, A., Lopez, M., Arenas, R., Bernardo, A., 2008. Modifications in membrane fatty acid composition of Salmonella typhimurium in response to growth conditions and their effect on heat resistance. Int. J. Food Microbiol. 123, 212-219.CrossRefGoogle Scholar
  4. Álvarez-Ordóñez, A., Halisch, J., Prieto, M., 2010. Changes in Fourier transform infrared spectra of Salmonella enterica serovars Typhimurium and Enteritidis after adaptation to stressful growth conditions. Int. J. Food Microbiol. 142, 97-105.CrossRefGoogle Scholar
  5. Álvarez-Ordóñez, A., Prieto, M., 2010. Changes in ultrastructure and Fourier transform infrared spectrum of Salmonella enterica serovar Typhimurium cells after exposure to stress conditions. Appl. Environ. Microbiol. doi:10.1128/AEM.00312-10.Google Scholar
  6. Ami, D., Natalello, A., Schultz, T., Gatti-Lafranconi, P., Lotti, M., Doglia, S.M., de, M.A., 2009. Effects of recombinant protein misfolding and aggregation on bacterial membranes. Biochim. Biophys. Acta 1794, 263-269.CrossRefGoogle Scholar
  7. Annous, B.A., Kozempel, M.F., Kurantz, M.J., 1999. Changes in membrane fatty acid composition of Pediococcus sp. strain NRRL B-2354 in response to growth conditions and its effect on thermal resistance. Appl. Environ. Microbiol. 65, 2857-2862.Google Scholar
  8. Beney, L., Mille, Y., Gervais, P., 2004. Death of Escherichia coli during rapid and severe dehydration is related to lipid phase transition. Appl. Microbiol. Biotechnol. 65, 457-464.CrossRefGoogle Scholar
  9. Bizani, D., Motta, A.S., Morrissy, J.A., Terra, R.M., Souto, A.A., Brandelli, A., 2005. Antibacterial activity of cerein 8A, a bacteriocin-like peptide produced by Bacillus cereus. Int. Microbiol. 8, 125-131.Google Scholar
  10. Casadei, M.A., Manas, P., Niven, G., Needs, E., Mackey, B.M., 2002. Role of membrane fluidity in pressure resistance of Escherichia coli NCTC 8164. Appl. Environ. Microbiol. 68, 5965-5972CrossRefGoogle Scholar
  11. Cheung, H.Y., Cui, J., Sun, S., 1999. Real-time monitoring of Bacillus subtilis endospore components by attenuated total reflection Fourier-transform infrared spectroscopy during germination. Microbiology 145(Pt 5), 1043-1048.CrossRefGoogle Scholar
  12. Davis, R., Burgula, Y., Deering, A., Irudayaraj, J., Reuhs, B.L., Mauer, L.J., 2010a. Detection and differentiation of live and heat-treated Salmonella enterica serovars inoculated onto chicken breast using Fourier transform infrared (FT-IR) spectroscopy. J. Appl. Microbiol. doi:10.1111/j.1365-2672.2010.04832.x.Google Scholar
  13. Davis, R., Irudayaraj, J., Reuhs, B.L., Mauer, L.J., 2010b. Detection of E. coli O157:H7 from ground beef using Fourier transform infrared (FT-IR) spectroscopy and chemometrics. J. Food Sci. 75, M340-M346.CrossRefGoogle Scholar
  14. Fang, J., Lyon, D.Y., Wiesner, M.R., Dong, J., Alvarez, P.J., 2007. Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ. Sci. Technol. 41, 2636-2642.CrossRefGoogle Scholar
  15. Feo, J.C., Castro, M.A., Robles, L.C., Aller, A.J., 2004. Fourier-transform infrared spectroscopic study of the interactions of selenium species with living bacterial cells. Anal. Bioanal. Chem. 378, 1601-1607.CrossRefGoogle Scholar
  16. Garip, S., Bozoglu, F., Severcan, F., 2007. Differentiation of mesophilic and thermophilic bacteria with Fourier transform infrared spectroscopy. Appl. Spectrosc. 61, 186-192.CrossRefGoogle Scholar
  17. Goodacre, R., Shann, B., Gilbert, R.J., Timmins, E.M., McGovern, A.C., Alsberg, B.K., Kell, D.B., Logan, N.A., 2000. Detection of the dipicolinic acid biomarker in Bacillus spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. Anal. Chem. 72, 119-127.CrossRefGoogle Scholar
  18. Hu, C., Guo, J., Qu, J., Hu, X., 2007. Photocatalytic degradation of pathogenic bacteria with AgI/TiO2 under visible light irradiation. Langmuir 23, 4982-4987.CrossRefGoogle Scholar
  19. Hu, X., Qiu, Z., Wang, Y., She, Z., Qian, G., Ren, Z., 2009. Effect of ultra-strong static magnetic field on bacteria: application of Fourier-transform infrared spectroscopy combined with cluster analysis and deconvolution. Bioelectromagnetics 30, 500-507.CrossRefGoogle Scholar
  20. Karatzas, K.A.G., Bennik, M.H.J., 2002. Characterization of a Listeria monocytogenes Scott A isolate with high tolerance towards high hydrostatic pressure. Appl. Environ. Microbiol. 68, 3183-3189.CrossRefGoogle Scholar
  21. Lin, M., Al-Holy, M., Al-Qadiri, H., Kang, D.H., Cavinato, A.G., Huang, Y., Rasco, B.A., 2004. Discrimination of intact and injured Listeria monocytogenes by Fourier transform infrared spectroscopy and principal component analysis. J. Agric. Food Chem. 52, 5769-5772.CrossRefGoogle Scholar
  22. Mille, Y., Beney, L., Gervais, P., 2002. Viability of Escherichia coli after combined osmotic and thermal treatment: a plasma membrane implication. Biochim. Biophys. Acta 1567, 41-48.CrossRefGoogle Scholar
  23. Moen, B., Janbu, A.O., Langsrud, S., Langsrud, O., Hobman, J.L., Constantinidou, C., Kohler, A., Rudi, K., 2009. Global responses of Escherichia coli to adverse conditions determined by microarrays and FT-IR spectroscopy. Can. J. Microbiol. 55, 714-728.CrossRefGoogle Scholar
  24. Moen, B., Oust, A., Langsrud, O., Dorrell, N., Marsden, G.L., Hinds, J., Kohler, A., Wren, B.W., Rudi, K., 2005. Explorative multifactor approach for investigating global survival mechanisms of Campylobacter jejuni under environmental conditions. Appl. Environ. Microbiol. 71, 2086-2094.CrossRefGoogle Scholar
  25. Motta, A.S., Flores, F.S., Souto, A.A., Brandelli, A., 2008. Antibacterial activity of a bacteriocin-like substance produced by Bacillus sp. P34 that targets the bacterial cell envelope. Antonie Van Leeuwenhoek 93, 275-284.CrossRefGoogle Scholar
  26. Oust, A., Moen, B., Martens, H., Rudi, K., Naes, T., Kirschner, C., Kohler, A., 2006. Analysis of covariance patterns in gene expression data and FT-IR spectra. J. Microbiol. Methods 65, 573-584.CrossRefGoogle Scholar
  27. Papadimitriou, K., Boutou, E., Zoumpopoulou, G., Tarantilis, P.A., Polissiou, M., Vorgias, C.E., Tsakalidou, E., 2008. RNA arbitrarily primed PCR and Fourier transform infrared spectroscopy reveal plasticity in the acid tolerance response of Streptococcus macedonicus. Appl. Environ. Microbiol. 74, 6068-6076.CrossRefGoogle Scholar
  28. Perkins, D.L., Lovell, C.R., Bronk, B.V., Setlow, B., Setlow, P., Myrick, M.L., 2004. Effects of autoclaving on bacterial endospores studied by Fourier transform infrared microspectroscopy. Appl. Spectrosc. 58, 749-753.CrossRefGoogle Scholar
  29. Perkins, D.L., Lovell, C.R., Bronk, B.V., Setlow, B., Setlow, P., Myrick, M.L., 2005. Fourier transform infrared reflectance microspectroscopy study of Bacillus subtilis engineered without dipicolinic acid: the contribution of calcium dipicolinate to the mid-infrared absorbance of Bacillus subtilis endospores. Appl. Spectrosc. 59, 893-896.CrossRefGoogle Scholar
  30. Scherber, C.M., Schottel, J.L., Aksan, A., 2009. Membrane phase behavior of Escherichia coli during desiccation, rehydration, and growth recovery. Biochim. Biophys. Acta 1788, 2427-2435.CrossRefGoogle Scholar
  31. Schleicher, E., Hessling, B., Illarionova, V., Bacher, A., Weber, S., Richter, G., Gerwert, K., 2005. Light-induced reactions of Escherichia coli DNA photolyase monitored by Fourier transform infrared spectroscopy. FEBS J. 272, 1855-1866.CrossRefGoogle Scholar
  32. Subramanian, A., Ahn, J., Balasubramaniam, V.M., Rodriguez-Saona, L., 2006. Determination of spore inactivation during thermal and pressure-assisted thermal processing using FT-IR spectroscopy. J. Agric. Food Chem. 54, 10300-10306.CrossRefGoogle Scholar
  33. Subramanian, A., Ahn, J., Balasubramaniam, V.M., Rodriguez-Saona, L., 2007. Monitoring biochemical changes in bacterial spore during thermal and pressure-assisted thermal processing using FT-IR spectroscopy. J. Agric. Food Chem. 55, 9311-9317.CrossRefGoogle Scholar
  34. Zoumpopoulou, G., Papadimitriou, K., Polissiou, M., Tarantilis, P.A., Tsakalidou, E., 2010. Detection of changes in the cellular composition of Salmonella enterica serovar Typhimurium in the presence of antimicrobial compound(s) of Lactobacillus strains using Fourier transform infrared spectroscopy. Int. J. Food Microbiol. 144, 202-207.CrossRefGoogle Scholar

Copyright information

© Avelino Alvarez-Ordóñez and Miguel Prieto 2012

Authors and Affiliations

  • Avelino Alvarez-Ordóñez
    • 1
  • Miguel Prieto
    • 2
  1. 1.Department of MicrobiologyUniversity College CorkCorkIreland
  2. 2.Department of Food Hygiene and TechnologyUniversity of LeónLeónSpain

Personalised recommendations