Advertisement

Introduction

Abstract

Chapter 1 provides summaries and highlights of the chapters that follow. In particular, ranks and cranks of partitions, the famous unpublished manuscript on the partition and tau-functions, and identities for the Rogers-Ramanujan functions are briefly discussed. Several mathematicians, whose collaborations and contributions to our volume are extremely important, are acknowledged and thanked.

Keywords

Modular Form Arithmetic Progression Trinity College London Mathematical Society Composite Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 5.
    S. Ahlgren and M. Boylan, Arithmetic properties of the partition function, Invent. Math. 153 (2003), 487–502. MathSciNetMATHCrossRefGoogle Scholar
  2. 17.
    G.E. Andrews and F.G. Garvan, Dyson’s crank of a partition, Bull. Amer. Math. Soc. 18 (1988), 167–171. MathSciNetMATHCrossRefGoogle Scholar
  3. 28.
    A.O.L. Atkin and H.P.F. Swinnerton-Dyer, Some properties of partitions, Proc. London Math. Soc. (3) 4 (1954), 84–106. MathSciNetMATHCrossRefGoogle Scholar
  4. 53.
    A. Berkovich, F.G. Garvan, and H. Yesilyurt, manuscript in preparation. Google Scholar
  5. 62.
    B.C. Berndt, H.H. Chan, S.H. Chan, and W.-C. Liaw, Cranks and dissections in Ramanujan’s lost notebook, J. Combin. Thy., Ser. A 109 (2005), 91–120. MathSciNetMATHCrossRefGoogle Scholar
  6. 63.
    B.C. Berndt, H.H. Chan, S.H. Chan, and W.-C. Liaw, Ramanujan and cranks, in Theory and Applications of Special Functions. A Volume Dedicated to Mizan Rahman, M.E.H. Ismail and E. Koelink, eds., Springer, New York, 2005, pp. 77–98. Google Scholar
  7. 64.
    B.C. Berndt, H.H. Chan, S.H. Chan, and W.-C. Liaw, Cranks—really the final problem, Ramanujan J. 23 (2010), 3–15. MathSciNetMATHCrossRefGoogle Scholar
  8. 65.
    B.C. Berndt, G. Choi, Y.-S. Choi, H. Hahn, B.P. Yeap, A.J. Yee, H. Yesilyurt, and J. Yi, Ramanujan’s forty identities for the Rogers–Ramanujan functions, Memoir No. 880, 188 American Mathematical Society, Providence, RI, 2007. Google Scholar
  9. 67.
    B.C. Berndt and K. Ono, Ramanujan’s unpublished manuscript on the partition and tau functions with proofs and commentary, Sém. Lotharingien de Combinatoire 42 (1999), 63 pp.; in The Andrews Festschrift, D. Foata and G.-N. Han, eds., Springer-Verlag, Berlin, 2001, pp. 39–110. Google Scholar
  10. 74.
    A.J.F. Biagioli, A proof of some identities of Ramanujan using modular forms, Glasgow Math. J. 31 (1989), 271–295. MathSciNetMATHCrossRefGoogle Scholar
  11. 75.
    B.J. Birch, A look back at Ramanujan’s notebooks, Proc. Cambridge Philos. Soc. 78 (1975), 73–79. MathSciNetMATHCrossRefGoogle Scholar
  12. 81.
    D. Bressoud, Proof and Generalization of Certain Identities Conjectured by Ramanujan, Ph.D. Thesis, Temple University, 1977. Google Scholar
  13. 127.
    F.J. Dyson, Some guesses in the theory of partitions, Eureka (Cambridge) 8 (1944), 10–15. Google Scholar
  14. 144.
    F.G. Garvan, Generalizations of Dyson’s Rank, Ph.D. Thesis, Pennsylvania State University, University Park, PA, 1986. Google Scholar
  15. 167.
    G.H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London Math. Soc. (2) 17 (1918), 75–115. MathSciNetCrossRefGoogle Scholar
  16. 228.
    P. Moree, On some claims in Ramanujan’s ‘unpublished’ manuscript on the partition and tau functions, Ramanujan J. 8 (2004), 317–330. MathSciNetMATHCrossRefGoogle Scholar
  17. 273.
    K.G. Ramanathan, Ramanujan and the congruence properties of partitions, Proc. Indian Acad. Sci. (Math. Sci.) 89 (1980), 133–157. MathSciNetMATHGoogle Scholar
  18. 274.
    S. Ramanujan, Highly composite numbers, Proc. London Math. Soc. (2) 14 (1915), 347–409. MATHGoogle Scholar
  19. 276.
    S. Ramanujan, Some properties of p(n), the number of partitions of n, Proc. Cambridge Philos. Soc. 19 (1919), 207–210. MATHGoogle Scholar
  20. 280.
    S. Ramanujan, Congruence properties of partitions, Math. Z. 9 (1921), 147–153. MathSciNetCrossRefGoogle Scholar
  21. 281.
    S. Ramanujan, Collected Papers, Cambridge University Press, Cambridge 1927; reprinted by Chelsea, New York, 1962; reprinted by the American Mathematical Society, Providence, RI, 2000. MATHGoogle Scholar
  22. 283.
    S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988. MATHGoogle Scholar
  23. 284.
    S. Ramanujan, Highly composite numbers, J.-L. Nicolas and G. Robin, eds., Ramanujan J. 1 (1997), 119–153. MathSciNetMATHCrossRefGoogle Scholar
  24. 304.
    L.J. Rogers, On a type of modular relation, Proc. London Math. Soc. 19 (1921), 387–397. MATHCrossRefGoogle Scholar
  25. 305.
    J.M. Rushforth, Congruence Properties of the Partition Function and Associated Functions, Doctoral Thesis, University of Birmingham, 1950. Google Scholar
  26. 333.
    G.N. Watson, Proof of certain identities in combinatory analysis, J. Indian Math. Soc. 20 (1933), 57–69. Google Scholar
  27. 336.
    G.N. Watson, Ramanujans Vermutung über Zerfällungsanzahlen, J. Reine Angew. Math. 179 (1938), 97–128. Google Scholar
  28. 347.
    H. Yesilyurt, A generalization of a modular identity of Rogers, J. Number Thy. 129 (2009), 1256–1271. MathSciNetMATHCrossRefGoogle Scholar
  29. 348.
    H. Yesilyurt, Elementary proofs of some identities of Ramanujan for the Rogers–Ramanujan functions, J. Math. Anal. Appl. 388 (2012), 420–434. MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of MathematicsThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of MathematicsUniversity of Illinois at Urbana–ChampaignUrbanaUSA

Personalised recommendations