Skip to main content

Stem Cells of the Adult Olfactory Epithelium

  • Chapter
  • First Online:

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

The capacity of the olfactory epithelium to recover after injury, and more specifically to reconstitute its population of sensory neurons, implies that the adult tissue retains stem cells that are competent to make neurons. Recent evidence, summarized here, indicates that the adult tissue stem cells retain a potency that is equivalent, or nearly so, to the cells of the olfactory placode, which are the embryonic precursors of the peripheral olfactory system. Moreover, there appears to be two distinct types of basal cells that are the best candidates for olfactory stem cells on the grounds of multipotency, self-renewal (at least partial), and mitotic quiescence. One stem cell candidate is a subset of the heterogeneous class of basal cells called globose basal cells that are unique to the olfactory epithelium. The other stem cell candidate is the population of horizontal basal cells, which closely resemble the basal cells of other epithelia. Sensible therapeutic exploitation of olfactory stem cells will require that they be characterized more precisely and isolated with greater facility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Graziadei PP (1990) Olfactory development. Wiley, New York

    Google Scholar 

  2. Graziadei PPC (1974) The olfactory organ of vertebrates: a survey. In: Bellairs R, Gray EG (eds) Essays on structure and function in the nervous system. Clarendon, London, pp 191–222

    Google Scholar 

  3. Schwob JE (2002) Neural regeneration and the peripheral olfactory system. Anat Rec 269:33–49

    PubMed  Google Scholar 

  4. Lane AP, Gomez G, Dankulich T, Wang H, Bolger WE, Rawson NE (2002) The superior turbinate as a source of functional human olfactory receptor neurons. Laryngoscope 112:1183–1189

    PubMed  Google Scholar 

  5. Rawson NE, Gomez G (2002) Cell and molecular biology of human olfaction. Microsc Res Tech 58:142–151

    PubMed  CAS  Google Scholar 

  6. Rawson NE, Gomez G, Cowart B, Restrepo D (1998) The use of olfactory receptor neurons (ORNs) from biopsies to study changes in aging and neurodegenerative diseases. Ann N Y Acad Sci 855:701–707

    PubMed  CAS  Google Scholar 

  7. Barraud P, Seferiadis AA, Tyson LD, Zwart MF, Szabo-Rogers HL, Ruhrberg C, Liu KJ, Baker CV (2011) Neural crest origin of olfactory ensheathing glia. Proc Natl Acad Sci U S A 107:21040–21045

    Google Scholar 

  8. Raisman G (2001) Olfactory ensheathing cells—another miracle cure for spinal cord injury? Nat Rev Neurosci 2:369–375

    PubMed  CAS  Google Scholar 

  9. Cuschieri A, Bannister LH (1975) The development of the olfactory mucosa in the mouse: light microscopy. J Anat 119:277–286

    PubMed  CAS  Google Scholar 

  10. Cuschieri A, Bannister LH (1975) The development of the olfactory mucosa in the mouse: electron microscopy. J Anat 119:471–498

    PubMed  CAS  Google Scholar 

  11. Couly GF, Le Douarin NM (1985) Mapping of the early neural primordium in quail-chick chimeras. I. Developmental relationships between placodes, facial ectoderm, and prosencephalon. Dev Biol 110:422–439

    PubMed  CAS  Google Scholar 

  12. Farbman AI, Squinto LM (1985) Early development of olfactory receptor cell axons. J Neurochem 44:1459–1464

    PubMed  Google Scholar 

  13. De Carlos JA, Lopez-Mascaraque L, Valverde F (1995) The telencephalic vesicles are innervated by olfactory placode-derived cells: a possible mechanism to induce neocortical development. Neuroscience 68:1167–1178

    PubMed  Google Scholar 

  14. Schwanzel-Fukuda M (1999) Origin and migration of luteinizing hormone-releasing hormone neurons in mammals. Microsc Res Tech 44:2–10

    PubMed  CAS  Google Scholar 

  15. Schwanzel-Fukuda M, Pfaff DW (1990) The migration of luteinizing hormone-releasing hormone (LHRH) neurons from the medial olfactory placode into the medial basal forebrain. Experientia 46:956–962

    PubMed  CAS  Google Scholar 

  16. Wray S (2002) Development of gonadotropin-releasing hormone-1 neurons. Front Neuroendocrinol 23:292–316

    PubMed  CAS  Google Scholar 

  17. Nagahara Y (1940) Experimentelle Studien uber die histologiischen Veranderungen des Geruchsorgan nach der Olfactoriusdurschneidung. Beitrage zur Kenntnis des feineren Baus des Geruchsorgans. Japan J Med Sci V Pathol 5:165–169

    Google Scholar 

  18. Schultz EW (1941) Regeneration of olfactory cells. Proc Soc Exp Biol Med 46:41–43

    Google Scholar 

  19. Moulton DG, Celebi G, Fink RP (1970) Olfaction in mammals—two aspects: proliferation of cells in the olfactory epithelium and sensitivity to odours. In: Wolstenholme GEW, Knight J (eds) Ciba foundation symposium on taste and smell in vertebrates. Churchill, London, pp 227–250

    Google Scholar 

  20. Graziadei PP, Metcalf JF (1971) Autoradiographic and ultrastructural observations on the frog’s olfactory mucosa. Z Zellforsch Mikrosk Anat 116:305–318

    PubMed  CAS  Google Scholar 

  21. Moulton DG (1975) Cell renewal in the olfactory epithelium. In: Denton DA, Coghlan JP (eds) Olfaction and Taste, V. Academic Press, New York, pp 111–114

    Google Scholar 

  22. Graziadei PP (1973) Cell dynamics in the olfactory mucosa. Tissue Cell 5:113–131

    PubMed  CAS  Google Scholar 

  23. Graziadei PP, Monti Graziadei GA (1979) Neurogenesis and neuron regeneration in the olfactory system of mammals. I. Morphological aspects of differentiation and structural organization of the olfactory sensory neurons. J Neurocytol 8:1–18

    PubMed  CAS  Google Scholar 

  24. Graziadei PPC, Monti Graziadei GA (1978) Continuous nerve cell renewal in the olfactory system. In: Jacobson M (ed) Handbook of Sensory Physiology, vol IX. Springer, Berlin, pp 55–82

    Google Scholar 

  25. Verhaagen J, Oestreicher AB, Gispen WH, Margolis FL (1989) The expression of the growth associated protein B50/GAP43 in the olfactory system of neonatal and adult rats. J Neurosci 9:683–691

    PubMed  CAS  Google Scholar 

  26. Meiri KF, Bickerstaff LE, Schwob JE (1991) Monoclonal antibodies show that kinase C phosphorylation of GAP-43 during axonogenesis is both spatially and temporally restricted in vivo. J Cell Biol 112:991–1005

    PubMed  CAS  Google Scholar 

  27. Schwob JE, Szumowski KE, Stasky AA (1992) Olfactory sensory neurons are trophically dependent on the olfactory bulb for their prolonged survival. J Neurosci 12:3896–3919

    PubMed  CAS  Google Scholar 

  28. Mackay-Sim A, Kittel PW (1991) On the life span of olfactory receptor neurons. Eur J Neurosci 3:209–215

    PubMed  Google Scholar 

  29. Ardiles Y, de la Puente R, Toledo R, Isgor C, Guthrie K (2007) Response of olfactory axons to loss of synaptic targets in the adult mouse. Exp Neurol 207:275–288

    PubMed  CAS  Google Scholar 

  30. Harding J, Graziadei PP, Monti Graziadei GA, Margolis FL (1977) Denervation in the primary olfactory pathway of mice. IV. Biochemical and morphological evidence for neuronal replacement following nerve section. Brain Res 132:11–28

    PubMed  CAS  Google Scholar 

  31. Monti Graziadei GA, Graziadei PP (1979) Neurogenesis and neuron regeneration in the olfactory system of mammals. II. Degeneration and reconstitution of the olfactory sensory neurons after axotomy. J Neurocytol 8:197–213

    Google Scholar 

  32. Costanzo RM, Graziadei PP (1983) A quantitative analysis of changes in the olfactory epithelium following bulbectomy in hamster. J Comp Neurol 215:370–381

    PubMed  CAS  Google Scholar 

  33. Costanzo RM (1984) Comparison of neurogenesis and cell replacement in the hamster olfactory system with and without a target (olfactory bulb). Brain Res 307:295–301

    PubMed  CAS  Google Scholar 

  34. Costanzo RM (1985) Neural regeneration and functional reconnection following olfactory nerve transection in hamster. Brain Res 361:258–266

    PubMed  CAS  Google Scholar 

  35. Costanzo RM (2000) Rewiring the olfactory bulb: changes in odor maps following recovery from nerve transection. Chem Senses 25:199–205

    PubMed  CAS  Google Scholar 

  36. Holbrook EH, Szumowski KE, Schwob JE (1995) An immunochemical, ultrastructural, and developmental characterization of the horizontal basal cells of rat olfactory epithelium. J Comp Neurol 363:129–146

    PubMed  CAS  Google Scholar 

  37. Huard JM, Schwob JE (1995) Cell cycle of globose basal cells in rat olfactory epithelium. Dev Dyn 203:17–26

    PubMed  CAS  Google Scholar 

  38. Schwartz Levey M, Chikaraishi DM, Kauer JS (1991) Characterization of potential precursor populations in the mouse olfactory epithelium using immunocytochemistry and autoradiography. J Neurosci 11:3556–3564

    PubMed  CAS  Google Scholar 

  39. Schwartz Levey M, Cinelli AR, Kauer JS (1992) Intracellular injection of vital dyes into single cells in the salamander olfactory epithelium. Neurosci Lett 140:265–269

    PubMed  CAS  Google Scholar 

  40. Caggiano M, Kauer JS, Hunter DD (1994) Globose basal cells are neuronal progenitors in the olfactory epithelium: a lineage analysis using a replication-incompetent retrovirus. Neuron 13:339–352

    PubMed  CAS  Google Scholar 

  41. Schwob JE, Huard JM, Luskin MB, Youngentob SL (1994) Retroviral lineage studies of the rat olfactory epithelium. Chem Senses 19:671–682

    PubMed  CAS  Google Scholar 

  42. Guillemot F, Lo LC, Johnson JE, Auerbach A, Anderson DJ, Joyner AL (1993) Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75:463–476

    PubMed  CAS  Google Scholar 

  43. Gordon MK, Mumm JS, Davis RA, Holcomb JD, Calof AL (1995) Dynamics of MASH1 expression in vitro and in vivo suggest a non-stem cell site of MASH1 action in the olfactory receptor neuron lineage. Mol Cell Neurosci 6:363–379

    PubMed  CAS  Google Scholar 

  44. Cau E, Gradwohl G, Fode C, Guillemot F (1997) Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors. Development 124:1611–1621

    PubMed  CAS  Google Scholar 

  45. Manglapus GL, Youngentob SL, Schwob JE (2004) Expression patterns of basic helix-loop-helix transcription factors define subsets of olfactory progenitor cells. J Comp Neurol 479:216–233

    PubMed  CAS  Google Scholar 

  46. Packard AI, Giel M, Leiter AB, Schwob JE (2011) The progenitor cell capacity of NeuroD1-expressing globose basal cells in the mouse olfactory epithelium. J Comp Neurol 519:3580–3596

    PubMed  CAS  Google Scholar 

  47. Calof AL, Rim PC, Askins KJ, Mumm JS, Gordon MK, Iannuzzelli P, Shou J (1998) Factors regulating neurogenesis and programmed cell death in mouse olfactory epithelium. Ann N Y Acad Sci 855:226–229

    PubMed  CAS  Google Scholar 

  48. Mumm JS, Shou J, Calof AL (1996) Colony-forming progenitors from mouse olfactory epithelium: evidence for feedback regulation of neuron production. Proc Natl Acad Sci U S A 93:11167–11172

    PubMed  CAS  Google Scholar 

  49. Calof AL, Mumm JS, Rim PC, Shou J (1998) The neuronal stem cell of the olfactory epithelium. J Neurobiol 36:190–205

    PubMed  CAS  Google Scholar 

  50. Cau E, Casarosa S, Guillemot F (2002) Mash1 and Ngn1 control distinct steps of determination and differentiation in the olfactory sensory neuron lineage. Development 129:1871–1880

    PubMed  CAS  Google Scholar 

  51. Wu HH, Ivkovic S, Murray RC, Jaramillo S, Lyons KM, Johnson JE, Calof AL (2003) Autoregulation of Neurogenesis by GDF11. Neuron 37:197–207

    PubMed  CAS  Google Scholar 

  52. Schwob JE, Youngentob SL, Mezza RC (1995) Reconstitution of the rat olfactory epithelium after methyl bromide-induced lesion. J Comp Neurol 359:15–37

    PubMed  CAS  Google Scholar 

  53. Iwema CL, Fang H, Kurtz DB, Youngentob SL, Schwob JE (2004) Odorant receptor expression patterns are restored in lesion-recovered rat olfactory epithelium. J Neurosci 24:356–369

    PubMed  CAS  Google Scholar 

  54. Cotsarelis G, Cheng SZ, Dong G, Sun TT, Lavker RM (1989) Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells. Cell 57:201–209

    PubMed  CAS  Google Scholar 

  55. Potten CS, Loeffler M (1990) Stem cells: attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110:1001–1020

    PubMed  CAS  Google Scholar 

  56. Morris RJ, Potten CS (1994) Slowly cycling (label-retaining) epidermal cells behave like clonogenic stem cells in vitro. Cell Prolif 27:279–289

    PubMed  CAS  Google Scholar 

  57. Potten CS (1998) Stem cells in gastrointestinal epithelium: numbers, characteristics and death. Philos Trans R Soc Lond B Biol Sci 353:821–830

    PubMed  CAS  Google Scholar 

  58. Watt FM, Hogan BL (2000) Out of Eden: stem cells and their niches. Science 287:1427–1430

    PubMed  CAS  Google Scholar 

  59. Lavker RM, Sun TT (2003) Epithelial stem cells: the eye provides a vision. Eye 17:937–942

    PubMed  CAS  Google Scholar 

  60. Goldstein BJ, Schwob JE (1996) Analysis of the globose basal cell compartment in rat olfactory epithelium using GBC-1, a new monoclonal antibody against globose basal cells. J Neurosci 16:4005–4016

    PubMed  CAS  Google Scholar 

  61. Jang W, Kim KP, Schwob JE (2007) Nonintegrin laminin receptor precursor protein is expressed on olfactory stem and progenitor cells. J Comp Neurol 502:367–381

    PubMed  CAS  Google Scholar 

  62. Huard JM, Youngentob SL, Goldstein BJ, Luskin MB, Schwob JE (1998) Adult olfactory epithelium contains multipotent progenitors that give rise to neurons and non-neural cells. J Comp Neurol 400:469–486

    PubMed  CAS  Google Scholar 

  63. Murray RC, Navi D, Fesenko J, Lander AD, Calof AL (2003) Widespread defects in the primary olfactory pathway caused by loss of Mash1 function. J Neurosci 23:1769–1780

    PubMed  CAS  Google Scholar 

  64. Chen X, Fang H, Schwob JE (2004) Multipotency of purified, transplanted globose basal cells in olfactory epithelium. J Comp Neurol 469:457–474

    PubMed  Google Scholar 

  65. Goldstein BJ, Fang H, Youngentob SL, Schwob JE (1998) Transplantation of multipotent progenitors from the adult olfactory epithelium. NeuroReport 9:1611–1617

    PubMed  CAS  Google Scholar 

  66. Leung CT, Coulombe PA, Reed RR (2007) Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat Neurosci 10:720–726

    PubMed  CAS  Google Scholar 

  67. Iwai N, Zhou Z, Roop DR, Behringer RR (2008) Horizontal basal cells are multipotent progenitors in normal and injured adult olfactory epithelium. Stem Cells 26:1298–1306

    PubMed  CAS  Google Scholar 

  68. Packard A, Schnittke N, Romano R-A, Sinha S, Schwob JE (2011) ΔNp63 regulates stem cell dynamics in the mammalian olfactory epithelium. J Neurosci 31:8748–8759

    PubMed  CAS  Google Scholar 

  69. Satoh M, Takeuchi M (1995) Induction of NCAM expression in mouse olfactory keratin-positive basal cells in vitro. Brain Res Dev Brain Res 87:111–119

    PubMed  CAS  Google Scholar 

  70. Satoh M, Yoshida T (2000) Expression of neural properties in olfactory cytokeratin-positive basal cell line. Brain Res Dev Brain Res 121:219–222

    PubMed  CAS  Google Scholar 

  71. Chen, X. (2003) Functional Capacity of Progenitor Cells in the Olfactory Epithelium. Ph.D. thesis in cell, molecular, and developmental biology, Tufts University, Boston

    Google Scholar 

  72. Cau E, Gradwohl G, Casarosa S, Kageyama R, Guillemot F (2000) Hes genes regulate sequential stages of neurogenesis in the olfactory epithelium. Development 127:2323–2332

    PubMed  CAS  Google Scholar 

  73. Davis RL, Turner DL (2001) Vertebrate hairy and Enhancer of split related proteins: transcriptional repressors regulating cellular differentiation and embryonic patterning. Oncogene 20:8342–8357

    PubMed  CAS  Google Scholar 

  74. Fisher A, Caudy M (1998) The function of hairy-related bHLH repressor proteins in cell fate decisions. BioEssays 20:298–306

    PubMed  CAS  Google Scholar 

  75. Suzuki Y, Mizoguchi I, Nishiyama H, Takeda M, Obara N (2003) Expression of Hes6 and NeuroD in the olfactory epithelium, vomeronasal organ and non-sensory patches. Chem Senses 28:197–205

    PubMed  CAS  Google Scholar 

  76. Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194:237–255

    PubMed  CAS  Google Scholar 

  77. Manglapus, G. L. (2003) Molecular mechanisms for progenitor cell regulation in the mammalian peripheral olfactory system. Ph.D. thesis in neuroscience and physiology, SUNY-Syracuse, Syracuse

    Google Scholar 

  78. Guo, Z. (2008) Maintenance, Differentiation, and Regulation of Multipotent Progenitor Cells in the Olfactory Epithelium. Ph.D. thesis in cell, molecular, and developmental biology, Tufts University, Boston

    Google Scholar 

  79. Guo Z, Packard A, Krolewski RC, Harris MT, Manglapus GL, Schwob JE (2010) Expression of pax6 and sox2 in adult olfactory epithelium. J Comp Neurol 518:4395–4418

    PubMed  Google Scholar 

  80. Kamachi Y, Uchikawa M, Tanouchi A, Sekido R, Kondoh H (2001) Pax6 and SOX2 form a co-DNA-binding partner complex that regulates initiation of lens development. Genes Dev 15:1272–1286

    PubMed  CAS  Google Scholar 

  81. Ikeda K, Kageyama R, Suzuki Y, Kawakami K (2010) Six1 is indispensable for production of functional progenitor cells during olfactory epithelial development. Int J Dev Biol 54:1453–1464

    PubMed  Google Scholar 

  82. Carr VM, Farbman AI (1992) Ablation of the olfactory bulb up-regulates the rate of neurogenesis and induces precocious cell death in olfactory epithelium. Exp Neurol 115:55–59

    PubMed  CAS  Google Scholar 

  83. Farbman AI, Brunjes PC, Rentfro L, Michas J, Ritz S (1988) The effect of unilateral naris occlusion on cell dynamics in the developing rat olfactory epithelium. J Neurobiol 19:681–693

    PubMed  Google Scholar 

  84. Farbman AI (1990) Olfactory neurogenesis: genetic or environmental controls? Trends Neurosci 13:362–365

    PubMed  CAS  Google Scholar 

  85. Calof AL, Chikaraishi DM (1989) Analysis of neurogenesis in a mammalian neuroepithelium: proliferation and differentiation of an olfactory neuron precursor in vitro. Neuron 3:115–127

    PubMed  CAS  Google Scholar 

  86. DeHamer MK, Guevara JL, Hannon K, Olwin BB, Calof AL (1994) Genesis of olfactory receptor neurons in vitro: regulation of progenitor cell divisions by fibroblast growth factors. Neuron 13:1083–1097

    PubMed  CAS  Google Scholar 

  87. Calof AL (1995) Intrinsic and extrinsic factors regulating vertebrate neurogenesis. Curr Opin Neurobiol 5:19–27

    PubMed  CAS  Google Scholar 

  88. Newman MP, Feron F, Mackay-Sim A (2000) Growth factor regulation of neurogenesis in adult olfactory epithelium. Neuroscience 99:343–350

    PubMed  CAS  Google Scholar 

  89. Hsu P, Yu F, Feron F, Pickles JO, Sneesby K, Mackay-Sim A (2001) Basic fibroblast growth factor and fibroblast growth factor receptors in adult olfactory epithelium. Brain Res 896:188–197

    PubMed  CAS  Google Scholar 

  90. Goldstein BJ, Wolozin BL, Schwob JE (1997) FGF2 suppresses neuronogenesis of a cell line derived from rat olfactory epithelium. J Neurobiol 33:411–428

    PubMed  CAS  Google Scholar 

  91. Kawauchi S, Shou J, Santos R, Hebert JM, McConnell SK, Mason I, Calof AL (2005) Fgf8 expression defines a morphogenetic center required for olfactory neurogenesis and nasal cavity development in the mouse. Development 132:5211–5223

    PubMed  CAS  Google Scholar 

  92. Mahanthappa NK, Schwarting GA (1993) Peptide growth factor control of olfactory neurogenesis and neuron survival in vitro: roles of EGF and TGF-betas. Neuron 10:293–305

    PubMed  CAS  Google Scholar 

  93. Farbman AI, Buchholz JA (1996) Transforming growth factor-alpha and other growth factors stimulate cell division in olfactory epithelium in vitro. J Neurobiol 30:267–280

    PubMed  CAS  Google Scholar 

  94. Farbman AI, Buchholz JA, Walters E, Margolis FL (1998) Does olfactory marker protein participate in olfactory neurogenesis? Ann N Y Acad Sci 855:248–251

    PubMed  CAS  Google Scholar 

  95. Getchell TV, Narla RK, Little S, Hyde JF, Getchell ML (2000) Horizontal basal cell proliferation in the olfactory epithelium of transforming growth factor-alpha transgenic mice. Cell Tissue Res 299:185–192

    PubMed  CAS  Google Scholar 

  96. Salehi-Ashtiani K, Farbman AI (1996) Expression of neu and Neu differentiation factor in the olfactory mucosa of rat. Int J Dev Neurosci 14:801–811

    PubMed  CAS  Google Scholar 

  97. Shou J, Murray RC, Rim PC, Calof AL (2000) Opposing effects of bone morphogenetic proteins on neuron production and survival in the olfactory receptor neuron lineage. Development 127:5403–5413

    PubMed  CAS  Google Scholar 

  98. Shou J, Rim PC, Calof AL (1999) BMPs inhibit neurogenesis by a mechanism involving degradation of a transcription factor. Nat Neurosci 2:339–345

    PubMed  CAS  Google Scholar 

  99. Kawauchi S, Kim J, Santos R, Wu HH, Lander AD, Calof AL (2009) Development 136:1453–1464

    PubMed  CAS  Google Scholar 

  100. Jang W, Lambropoulos J, Woo JK, Peluso CE, Schwob JE (2008) Maintaining epitheliopoietic potency when culturing olfactory progenitors. Exp Neurol 214:25–36

    PubMed  CAS  Google Scholar 

  101. Krolewski RC, Jang W, Schwob JE (2011) The generation of olfactory epithelial neurospheres in vitro predicts engraftment. Exper Neurol 229:308–323

    Google Scholar 

  102. Reynolds BA, Weiss S (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175:1–13

    PubMed  CAS  Google Scholar 

  103. McQualter JL, Yuen K, Williams B, Bertoncello I (2010) Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci U S A 107:1414–1419

    PubMed  CAS  Google Scholar 

  104. Toma JG, Akhavan M, Fernandes KJ, Barnabe-Heider F, Sadikot A, Kaplan DR, Miller FD (2001) Isolation of multipotent adult stem cells from the dermis of mammalian skin. Nat Cell Biol 3:778–784

    PubMed  CAS  Google Scholar 

  105. Woodward WA, Chen MS, Behbod F, Rosen JM (2005) On mammary stem cells. J Cell Sci 118:3585–3594

    PubMed  CAS  Google Scholar 

  106. Pixley SK, Bage M, Miller D, Miller ML, Shi M, Hastings L (1994) Olfactory neurons in vitro show phenotypic orientation in epithelial spheres. NeuroReport 5:543–548

    PubMed  CAS  Google Scholar 

  107. Murrell W, Feron F, Wetzig A, Cameron N, Splatt K, Bellette B, Bianco J, Perry C, Lee G, Mackay-Sim A (2005) Multipotent stem cells from adult olfactory mucosa. Dev Dyn 233:496–515

    PubMed  Google Scholar 

  108. Barraud P, He X, Zhao C, Ibanez C, Raha-Chowdhury R, Caldwell MA, Franklin RJ (2007) Contrasting effects of basic fibroblast growth factor and epidermal growth factor on mouse neonatal olfactory mucosa cells. Eur J Neurosci 26:3345–3357

    PubMed  Google Scholar 

  109. Tome M, Lindsay SL, Riddell JS, Barnett SC (2009) Identification of nonepithelial multipotent cells in the embryonic olfactory mucosa. Stem Cells 27:2196–2208

    PubMed  CAS  Google Scholar 

  110. Griffith LG, Swartz MA (2006) Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 7:211–224

    PubMed  CAS  Google Scholar 

  111. Bodian DA, Howe HA (1941) Experimental studies on intraneural spread of poliomyelitis virus. Bull. Johns Hohpkins Hosp. 68:248–267

    Google Scholar 

  112. Moran DT, Rowley JC 3rd, Jafek BW, Lovell MA (1982) The fine structure of the olfactory mucosa in man. J Neurocytol 11:721–746

    PubMed  CAS  Google Scholar 

  113. Morrison EE, Costanzo RM (1990) Morphology of the human olfactory epithelium. J Comp Neurol 297:1–13

    PubMed  CAS  Google Scholar 

  114. Yamagishi M, Nakano Y (1992) A re-evaluation of the classification of olfactory epithelia in patients with olfactory disorders. Eur Arch Otorhinolaryngol 249:393–399

    PubMed  CAS  Google Scholar 

  115. Yamagishi M, Fujiwara M, Nakamura H (1994) Olfactory mucosal findings and clinical course in patients with olfactory disorders following upper respiratory viral infection. Rhinology 32:113–118

    PubMed  CAS  Google Scholar 

  116. Holbrook EH, Leopold DA, Schwob JE (2005) Abnormalities of axon growth in human olfactory mucosa. Laryngoscope 115:2144–2154

    PubMed  Google Scholar 

  117. Yee KK, Pribitkin EA, Cowart BJ, Vainius AA, Klock CT, Rosen D, Feng P, McLean J, Hahn CG, Rawson NE (2010) Neuropathology of the olfactory mucosa in chronic rhinosinusitis. Am J Rhinol Allergy 24:110–120

    PubMed  Google Scholar 

  118. Witt M, Bormann K, Gudziol V, Pehlke K, Barth K, Minovi A, Hahner A, Reichmann H, Hummel T (2009) Biopsies of olfactory epithelium in patients with Parkinson’s disease. Mov Disord 24:906–914

    PubMed  Google Scholar 

  119. Hahn CG, Han LY, Rawson NE, Mirza N, Borgmann-Winter K, Lenox RH, Arnold SE (2005) In vivo and in vitro neurogenesis in human olfactory epithelium. J Comp Neurol 483:154–163

    PubMed  Google Scholar 

  120. Holbrook EH, Wu H, Curry WT, Lin DT, Schwob JE (2011) Immunohistochemical characterization of human olfactory tissue. Laryngoscope 121:1687–1701

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank present and past members of the Schwob laboratory for their myriad contributions to the success of this work. The laboratory’s work and the preparation of the review were supported by grants from the NIH R01 DC002167, R01 DC010242, and R21 DC010920.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Schwob .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schwob, J.E., Jang, W., Holbrook, E.H. (2012). Stem Cells of the Adult Olfactory Epithelium. In: Rao, M., Carpenter, M., Vemuri, M. (eds) Neural Development and Stem Cells. Stem Cell Biology and Regenerative Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3801-4_8

Download citation

Publish with us

Policies and ethics