Skip to main content

Climatic Drivers of Tree Growth and Recent Recruitment at the Pyrenean Alpine Tree Line Ecotone

  • Chapter
  • First Online:
Ecotones Between Forest and Grassland

Abstract

Global climate is currently warming at an unprecedented rate with potentially profound and widespread effects on the distributions of plant species and ecological communities (IPCC 2007; Lenoir et al. 2008). Mountain ecosystems and their unique biota are particularly sensitive to such changes (Beniston 2003). In high elevation forests, climate has been considered to be the main limiting factor for tree growth, reproduction and establishment (e.g. Tranquillini 1979; Körner 1998; Ettinger et al. 2011). The upper elevational limit of forest and tree growth on mountain slopes, the alpine tree line ecotone (ATL), represents an abrupt transition in life form dominance and is one of the most prominent vegetation boundaries between ecosystems (Holtmeier 2009). On a global scale, heat deficiency remains the most likely explanation of ATL elevation irrespective of the latitude and the tree line forming species (Körner and Paulsen 2004). Hence, based on the traditional tree line paradigm, warm temperature is favourable to both tree radial growth and reproductive success, and thus the ATL may be exceptional for the potential it offers for the assessment of the impacts of anthropogenic warming on mountain forests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agustí-Panareda A, Thompson R, Livingstone DM (2000) Reconstructing temperature variations at high elevation lake sites in Europe during the instrumental period. Verhandlungen der Internationalen Vereinigung Limnologie 27:479–483

    Google Scholar 

  • Alftine KJ, Malanson GP, Fagre DB (2003) Feedback-driven response to multidecadal climatic variability at an alpine treeline. Phys Geogr 24(6):520–535

    Article  Google Scholar 

  • Améztegui A, Brotons L, Coll L (2010) Land-use changes as major drivers of mountain pine (Pinus uncinata Ram.) expansion in the Pyrenees. Glob Ecol Biogeogr 19(5):632–641

    Google Scholar 

  • Aune S, Hofgaard A, Söderström L (2011) Contrasting climate- and land-use-driven tree encroachment patterns of subarctic tundra in northern Norway and the Kola Peninsula. Can J For Res 41(3):437–449

    Article  Google Scholar 

  • Barry RG (1992) Mountain weather and climate, 2nd edn. Routledge, London

    Google Scholar 

  • Batllori E, Gutiérrez E (2008) Regional tree line dynamics in response to global change in the Pyrenees. J Ecol 96(6):1275–1288

    Article  Google Scholar 

  • Batllori E, Camarero JJ, Ninot JM, Gutiérrez E (2009) Seedling recruitment, survival and facilitation in alpine Pinus uncinata tree line ecotones. Implications and potential responses to climate warming. Glob Ecol Biogeogr 18(4):460–472

    Article  Google Scholar 

  • Batllori E, Camarero JJ, Gutiérrez E (2010) Current regeneration patterns at the tree line in the Pyrenees indicate similar recruitment processes irrespective of the past disturbance regime. J Biogeogr 37(10):1938–1950

    Google Scholar 

  • Bekker MF, Clark JT, Jackson MW (2009) Landscape metrics indicate differences in patterns and dominant controls of ribbon forests in the Rocky Mountains, USA. Appl Veg Sci 12(2):237–249

    Article  Google Scholar 

  • Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Chang 59(1–2):5–31

    Article  Google Scholar 

  • Bogaert RV, Haneca K, Hoogesteger J, Jonasson MD, Callaghan TV (2011) A century of tree line changes in sub-Arctic Sweden shows local and regional variability and only a minor influence of 20th century climate warming. J Biogeogr 38(5):907–921

    Article  Google Scholar 

  • Bosch O, Gutiérrez E (1999) La sucesión en los bosques de Pinus uncinata del Pirineo. De los anillos de crecimiento a la historia del bosque. Ecología 13:133–171

    Google Scholar 

  • Bunn R (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26:115–124

    Article  Google Scholar 

  • Caccianiga M, Compostella C (2011) Growth forms and age estimation of treeline species. Trees. doi:10.1007/s00468-011-0595-1

  • Camarero JJ, Gutiérrez E (2004) Pace and pattern of recent treeline dynamics: response of ecotones to climatic variability in the Spanish Pyrenees. Clim Chang 63(1–2):181–200

    Article  Google Scholar 

  • Camarero JJ, Gutiérrez E (2007) Response of Pinus uncinata Recruitment to Climate Warming and Changes in Grazing Pressure in an Isolated Population of the Iberian System (NE Spain). Arctic Antarctic Alpine Res 39(2):210–217

    Article  Google Scholar 

  • Camarero JJ, Guerrero-Campo J, Gutiérrez E (1998) Tree-ring growth and structure of Pinus uncinata and Pinus sylvestris in the central Spanish Pyrenees. Arctic Antarctic Alpine Res 30(1):1–10

    Google Scholar 

  • Camarero JJ, Gutiérrez E, Fortin M-J (2000) Spatial pattern of subalpine forest-alpine grassland ecotones in the Spanish Central Pyrenees. For Ecol Manage 134:1–16

    Article  Google Scholar 

  • Carrer M, Urbinati C (2004) Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85(3):730–740

    Article  Google Scholar 

  • Carrer M, Nola P, Eduard JL, Motta R, Urbinati C (2007) Regional variability of climate–growth relationships in Pinus cembra high elevation forests in the Alps. J Ecol 95(5):1072–1083

    Article  Google Scholar 

  • Carreras J, Carrillo E, Masalles R, Ninot J, Soriano I, Vigo J (1996) Delimitation of the supra-forest zone in the Catalan Pyrenees. Bulletin de la Societé linnéenne de Provence 47:27–36

    Google Scholar 

  • D’Arrigo RD, Kaufmann RK, Davi N, Jacoby GC, Laskowski C, Myneni RB, Cherubini P (2004) Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada. Global Biogeochem Cycles 18. doi:10.1029/2004GB002249

  • Dalen L, Hofgaard A (2005) Differential regional treeline dynamics in the Scandes Mountains. Arctic Antarctic Alpine Res 37(3):284–296

    Article  Google Scholar 

  • Danby RK, Hik DS (2007) Variability, contingency and rapid change in recent subarctic alpine tree line dynamics. J Ecol 95(2):352–363

    Article  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0

    Google Scholar 

  • Dixon PM (2001) Bootstrap resampling. In: El-Shaarawi AH, Piegorsch WW (eds) The encyclopedia of environmetrics. Wiley, New York

    Google Scholar 

  • Dullinger S, Dirnböck T, Grabherr G (2004) Modelling climate change-driven treeline shifts: relative effects of temperature increase, dispersal and invasibility. J Ecol 92(2):241–252

    Article  Google Scholar 

  • Elliot GP (2011) Influences of 20th-century warming at the upper tree line contingent on local-scale interactions: evidence from a latitudinal gradient in the Rocky Mountains, USA. Glob Ecol Biogeogr 20(1):46–57

    Article  Google Scholar 

  • Ettinger AK, Ford KR, HilleRisLambers J (2011) Climate determines upper, but not lower, altitudinal range limits of Pacific Northwest conifers. Ecology 92(6):1323–1331

    Article  PubMed  CAS  Google Scholar 

  • Fang K, Gou X, Chen F, Peng J, D’Arrigo R, Wright W, Li M-H (2009) Response of regional tree-line forests to climate change: evidence from the northeastern Tibetan Plateau. Trees 23(6):1321–1329

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic, New York

    Google Scholar 

  • Gamache I, Payette S (2005) Latitudinal response of subarctic tree lines to recent climate change in eastern Canada. J Biogeogr 32(5):849–862

    Article  Google Scholar 

  • Garcia-Ruiz J, Lasanta T, Ruiz-Flano P, Ortigosa L, White S, González C, Martí C (1996) Land-use changes and sustainable development in mountain areas: a case study in the Spanish Pyrenees. Landsc Ecol 11(5):267–277

    Article  Google Scholar 

  • Gehring-Fasel J, Guisan A, Zimmermann NE (2007) Tree line shifts in the Swiss Alps: climate change or land abandonment? J Veg Sci 18(4):571–582

    Article  Google Scholar 

  • Grace J, Berninger F, Nagy L (2002) Impacts of climate change on the tree line. Ann Bot 90(4):537–544

    Article  PubMed  CAS  Google Scholar 

  • Green K (2009) Causes of stability in the alpine treeline in the Snowy Mountains of Australia—a natural experiment. Aust J Bot 57(3):171–179

    Article  Google Scholar 

  • Harsh MA, Bader MY (2011) Treeline form—a potential key to understanding treeline dynamics. Glob Ecol Biogeogr 20(4):582–596

    Article  Google Scholar 

  • Harsh MA, Hulme PE, McGlone MS, Duncan RP (2009) Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol Lett 12(10):1040–1049

    Article  Google Scholar 

  • Hofgaard A (1997) Inter-relationships between treeline position, species diversity, land use and climate change in the Central Scandes Mountains of Norway. Glob Ecol Biogeogr Lett 6(6):419–429

    Article  Google Scholar 

  • Holmes RL (1983) Computer-assisted quality control in tree-ring dating measurement. Tree Ring Bull 43:68–78

    Google Scholar 

  • Holtmeier F-K (2009) Mountain timberlines: ecology, patchiness, and dynamics. Springer, New York

    Google Scholar 

  • Holtmeier F-K, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Glob Ecol Biogeogr 14(5):395–410

    Article  Google Scholar 

  • Holtmeier F-K, Broll G (2010) Wind as an ecological agent at treelines in North America, the Alps, and the European Subarctic. Phys Geogr 31(3):203–233

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M et al (eds) Contribution of Working Group I to the Forth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Kagawa A, Sugimoto A, Maximov TC (2006) 13CO2 pulse-labelling of photoassimilates reveals carbon allocation within and between tree rings. Plant Cell Environ 29(8):1571–1584

    Article  PubMed  CAS  Google Scholar 

  • Kharuk VI, Im ST, Dvinskaya ML, Ranson KJ (2010) Climate-induced mountain tree-line evolution in southern Siberia. Scand J For Res 25:446–454

    Article  Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115(4):445–459

    Article  Google Scholar 

  • Körner C (2007) Climatic treelines: conventions, global patterns, causes. Erdkunde 61(4):316–324

    Article  Google Scholar 

  • Körner C, Paulsen J (2004) A world-wide study of high altitude treeline temperatures. J Biogeogr 31(5):713–732

    Article  Google Scholar 

  • Kullman L (2005) Pine (Pinus sylvestris) treeline dynamics during the past millennium—a population study in west-central Sweden. Ann Bot Fennici 42:95–106

    Google Scholar 

  • Lenoir J, Gégout JC, Marquet PA, Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320(5884):1768–1771

    Article  PubMed  CAS  Google Scholar 

  • Levin SA (1992) The problem of pattern and scale in ecology. Ecology 73(6):1943–1967

    Article  Google Scholar 

  • Liang E, Wang Y, Eckstein D, Luo T (2011) Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming. New Phytol 190(3):760–769

    Article  PubMed  Google Scholar 

  • Lloyd AH, Fastie CL (2002) Spatial and temporal variability in the growth and climate response of treeline trees in Alaska. Clim Chang 52(4):481–509

    Article  Google Scholar 

  • Lloyd AH, Graumlich LJ (1997) Holocene dynamics of treeline forests in the Sierra Nevada. Ecology 78(4):1199–1210

    Article  Google Scholar 

  • Macias M, Andreu L, Bosch O, Camarero JJ, Gutiérrez E (2006) Increasing aridity is enhancing silver fir (Abies alba Mill.) water stress in its south-western distribution limit. Clim Chang 79(3–4):289–313

    Article  Google Scholar 

  • Malanson GP, Butler DR, Fagre DB, Walsh SJ, Tomback DF, Daniels LD, Resler LM, Smith WK, Weiss DL, Peterson DL, Bunn AG, Hiemstra CA, Liptzin D, Bourgeon PS, Shen Z, Millar CI (2007) Alpine treeline of western North America: linking organism-to-landscape dynamics. Phys Geogr 28(5):378–396

    Article  Google Scholar 

  • Malanson GP, Resler LM, Bader MY, Holtmeier F-K, Butler DR, Weiss DJ, Daniels LD, Fagre DB (2011) Mountain treelines: a roadmap for research orientation. Arctic Antarctic Alpine Res 43(2):167–177

    Article  Google Scholar 

  • Mathisen IE, Hofgaard A (2011) Recent height and diameter growth variation in Scots pine (Pinus sylvestris L.) along the Arctic margin: the importance of growing season versus non-growing season climate factors. Plant Ecol Divers 4(1):1–11

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P et al (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12(1):1969–1976

    Article  Google Scholar 

  • Mitchell, TD, Carter TR, Jones, PD, Hulme, M, New, M (2004) A comprehensive set of high-resolution grids of monthly climate of Europe and the globe: the observed record (1901-2000) and 16 scenarios (2001-2100)

    Article  Google Scholar 

  • Mitchell, TD, Jones PD (2005) An improved method for constructing a database of monthly climate observations and associated highresolution grids. Int J Climatol 25: 693-712

    Article  Google Scholar 

  • Ninot JM, Carrillo E, Font X, Carreras J, Ferré A, Masalles RM, Soriano I, Vigo J (2007) Altitude zonation in the Pyrenees. A geobotanic interpretation. Phytocoenologia 37(3–4):371–398

    Article  Google Scholar 

  • Noble IR (1993) A model of the responses of ecotones to climate change. Ecol Appl 3(3):396–403

    Article  Google Scholar 

  • Oberhuber W, Kofler W, Pfeifer K, Seeber A, Gruber A, Wieser G (2008) Long-term changes in tree-ring-climate relationships at Mt. Patscherkofel (Tyrol, Austria) since the mid-1980s. Trees Struct Funct 22(1):31–40

    Article  Google Scholar 

  • Payette S (2007) Contrasted dynamics of northern Labrador tree lines caused by climate change and migrational lag. Ecology 88(3):770–780

    Article  PubMed  Google Scholar 

  • Pfeifer K, Kofler W, Oberhuber W (2005) Climate related causes of distinct radial growth reductions in Pinus cembra during the last 200 years. Veg Hist Archaeobot 14(3):211–220

    Article  Google Scholar 

  • Rangel TFLVB, Diniz-Filho JAF, Bini LM (2006) Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Glob Ecol Biogeogr 15(4):321–327

    Article  Google Scholar 

  • Resler LM (2006) Geomorphic controls of spatial pattern and process at alpine treeline. Prof Geogr 58(2):124–138

    Article  Google Scholar 

  • Rinn F (2003) TSAP-Win—time series analysis and presentation dendrochronology and related applications. Frank Rinn, Heidelberg

    Google Scholar 

  • Rolland C, Schueller JF (1994) Relationship between mountain pine and climate in the French Pyrenees (Font-Romeu) studied using the radiodensitometrical method. Pirineos 143–144:55–70

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Gričar J, Seo J-W, Rathgeber CBK, Anfodillo T, Morin H, Levanic T, Oven P, Jalkanen R (2008) Critical temperatures for xylogenesis in conifers of cold climates. Glob Ecol Biogeogr 17(6):696–707

    Article  Google Scholar 

  • Smith WK, Germino MJ, Hancock TE, Johnson DM (2003) Another perspective on altitudinal limits of alpine timberlines. Tree Physiol 23(16):1101–1112

    Article  PubMed  Google Scholar 

  • Smith WK, Germino MJ, Johnson DM, Reinhardt K (2009) The altitude of alpine treeline: a bellwether of climate change effects. Bot Rev 75:163–190

    Article  Google Scholar 

  • Srutek M, Dolezal J, Hara T (2002) Spatial structue and associations in a Pinus canariensis population at the treeline, Pico del Teide, Tenerife, Canary Islands. Arctic Antarctic Alpine Res 34(2):201–210

    Article  Google Scholar 

  • Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, Chicago

    Google Scholar 

  • Stueve KM, Isaacs RE, Tyrrell LE, Densmore RV (2011) Spatial variability of biotic and abiotic tree establishment constraints across a treeline ecotone in the Alaska Range. Ecology 92(2):496–506

    Article  PubMed  Google Scholar 

  • Sveinbjörnsson B, Hofgaard A, Lloyd A (2002) Natural causes of the Tundra-Taiga boundary. Ambio Spec Rep 12:23–29

    Google Scholar 

  • Tardif J, Camarero JJ, Ribas M, Gutiérrez E (2003) Spatiotemporal variability in tree growth in the central Pyrenees: climatic and site influences. Ecol Monogr 73(2):241–257

    Article  Google Scholar 

  • Tranquillini W (1979) Physiological ecology of the alpine timberline: tree existence at high altitudes with special reference to the European Alps. Springer, Berlin

    Google Scholar 

  • Vigo J, Ninot JM (1987) Los Pirineos. In: Peinado-Lorca M, Rivas-Martínez S (eds) La vegetación de España. Publicaciones Universidad Alcalá de Henares, Alcalá de Henares, pp 351–384

    Google Scholar 

  • Vittoz P, Rulence B, Largey T, Freléchoux F (2008) Effects of climate and land-use change on the establishment and growth of Cembran Pine (Pinus cembra L.) over the altitudinal treeline ecotone in the Central Swiss Alps. Arctic Antractic Alpine Res 40(1):225–232

    Article  Google Scholar 

  • Wieser G, Tausz M (2007) Trees at their upper limit. Treelife limitation at the alpine timberline. Plant Ecophysiol 5. Springer, Dordrecht

    Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23(2):201–213

    Article  Google Scholar 

  • Wilmking M, Juday GP (2005) Longitudinal variation of radial growth at Alaska’s northern treeline-recent changes and possible scenarios for the 21st century. Glob Planet Change 47(2–4):282–300

    Article  Google Scholar 

  • Wilmking M, Juday GP, Barber VA, Zald HJ (2004) Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Glob Chang Biol 10(10):1724–1736

    Article  Google Scholar 

  • Wong CM, Lertzman KP (2001) Errors in estimating tree age: implications for studies of stand dynamics. Can J For Res 31(7):1262–1271

    Article  Google Scholar 

  • Yamaguchi DK (1991) A simple method for cross-dating increment cores from living trees. Can J For Res 21(3):414–416

    Article  Google Scholar 

  • Zang C (2011). bootRes: The bootRes package for bootstrapped response and correlation functions. URL:http://cran.r-project.org/web/packages/bootRes/bootRes.pdf

Download references

Acknowledgements

We are grateful to all the people who helped us in the field work, and to PN Alt Pirineu, PN Cadí-Moixeró and PN Aigüestortes i Estany de Sant Maurici for their collaboration. Special thanks to J.M. Ninot, E. Carrillo, J. Carreras and A. Ferré for their permanent support. This study was supported by the project REN2002-04268 (Spanish Ministry of Research). E.B. and J.J.C. also acknowledge the support from MEC-FPU grant and ARAID, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enric Batllori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Batllori, E., Camarero, J.J., Gutiérrez, E. (2012). Climatic Drivers of Tree Growth and Recent Recruitment at the Pyrenean Alpine Tree Line Ecotone. In: Myster, R. (eds) Ecotones Between Forest and Grassland. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3797-0_11

Download citation

Publish with us

Policies and ethics