Advertisement

Motility and Pressure Phenomena of the Esophagus

Chapter

Abstract

The esophagus is a muscular tube consisting of three functional regions: the upper and lower esophageal sphincters, and the esophageal body. On high-resolution manometry, the esophageal body consists of three contracting segments: the proximal striated muscle segment, followed by two smooth muscle segments, separated by pressure troughs. The sphincters and contracting segments function in contiguity to form a chain of relaxing and contracting segments, modulated by cortical, brain stem, and peripheral influences.

Keywords

Motility Pressure phenomena Esophagus Esophageal contraction ­segments Striated muscle esophagus Smooth muscle esophagus 

References

  1. 1.
    Goyal RK, Chaudhury A. Physiology of normal esophageal motility. J Clin Gastroenterol. 2008;42:610–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Pandolfino JE, Ghosh SK, Rice J, Clarke JO, Kwiatek MA, Kahrilas PJ. Classifying esophageal motility by pressure topography characteristics: a study of 400 patients and 75 controls. Am J Gastroenterol. 2008;103:27–37.PubMedGoogle Scholar
  3. 3.
    Pandolfino JE, Kwiatek MA, Nealis T, Bulsiewicz W, Post J, Kahrilas PJ. Achalasia: a new clinically relevant classification by high-resolution manometry. Gastroenterology. 2008;135:1526–33.PubMedCrossRefGoogle Scholar
  4. 4.
    Conklin JL, Christensen J. Motor functions of the esophagus. In: Christensen JJ, Alpers D, Jacobsen ED, Walsh J, editors. Physiology of the gastrointestinal tract. Raven Press, New York. 1994. pp. 33–40.Google Scholar
  5. 5.
    Miller A, Bieger MD, Conklin JL. Functional controls of deglutition. In: Perlman A, Schulze-Delrieu K, ­editors. Deglutition and its disorders: anatomy, physiology, clinical diagnosis and management. San Diego, CA: Singular Publishing Group, Inc.; 1996. p. 43–97.Google Scholar
  6. 6.
    Kahrilas PJ, Dodds WJ, Dent J, Logemann JA, Shaker R. Upper esophageal sphincter function during deglutition. Gastroenterology. 1988;95:52–62.PubMedGoogle Scholar
  7. 7.
    Sivarao DV, Goyal RK. Functional anatomy and physiology of the upper esophageal sphincter. Am J Med. 2000;108(Suppl 4a):27S–37.PubMedCrossRefGoogle Scholar
  8. 8.
    Lang IM, Shaker R. Anatomy and physiology of the upper esophageal sphincter. Am J Med. 1997;103: 50S–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Bombeck CT, Dillard DH, Nyhus LM. Muscular anatomy of the gastroesophageal junction and role of phrenoesophageal ligament; autopsy study of sphincter mechanism. Ann Surg. 1966;164:643–54.PubMedCrossRefGoogle Scholar
  10. 10.
    Christensen J, Robison BA. Anatomy of the myenteric plexus of the opossum esophagus. Gastroenterology. 1982;83:1033–42.PubMedGoogle Scholar
  11. 11.
    Ertekin C, Aydogdu I. Neurophysiology of swallowing. Clin Neurophysiol. 2003;114:2226–44.PubMedCrossRefGoogle Scholar
  12. 12.
    Mittal RK, Balaban DH. The esophagogastric junction. N Engl J Med. 1997;336:924–32.PubMedCrossRefGoogle Scholar
  13. 13.
    Goyal RK, Rattan S. Nature of the vagal inhibitory innervation to the lower esophageal sphincter. J Clin Invest. 1975;55:1119–26.PubMedCrossRefGoogle Scholar
  14. 14.
    Yamato S, Spechler SJ, Goyal RK. Role of nitric oxide in esophageal peristalsis in the opossum. Gastroenterology. 1992;103:197–204.PubMedGoogle Scholar
  15. 15.
    Hamdy S, Mikulis DJ, Crawley A, Xue S, Lau H, Henry S, Diamant NE. Cortical activation during human volitional swallowing: an event-related fMRI study. Am J Physiol. 1999;277:G219–25.PubMedGoogle Scholar
  16. 16.
    Cola MG, Daniels SK, Corey DM, Lemen LC, Romero M, Foundas AL. Relevance of subcortical stroke in dysphagia. Stroke. 2010;41:482–6.PubMedCrossRefGoogle Scholar
  17. 17.
    Michou E, Hamdy S. Cortical input in control of swallowing. Curr Opin Otolaryngol Head Neck Surg. 2009;17:166–71.PubMedCrossRefGoogle Scholar
  18. 18.
    Gonzalez-Fernandez M, Kleinman JT, Ky PK, Palmer JB, Hillis AE. Supratentorial regions of acute ischemia associated with clinically important swallowing disorders: a pilot study. Stroke. 2008;39:3022–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Lowell SY, Poletto CJ, Knorr-Chung BR, Reynolds RC, Simonyan K, Ludlow CL. Sensory stimulation activates both motor and sensory components of the swallowing system. Neuroimage. 2008;42:285–95.PubMedCrossRefGoogle Scholar
  20. 20.
    Broussard DL, Altschuler SM. Brainstem viscerotopic organization of afferents and efferents involved in the control of swallowing. Am J Med. 2000; 108(Suppl 4a):79S–86.PubMedCrossRefGoogle Scholar
  21. 21.
    Roman C. Nervous control of esophageal peristalsis. J Physiol Paris. 1966;58:79–108.PubMedGoogle Scholar
  22. 22.
    Higgs B, Kerr FW, Ellis Jr FH. The experimental production of esophageal achalasia by electrolytic lesions in the medulla. J Thorac Cardiovasc Surg. 1965;50:613–25.PubMedGoogle Scholar
  23. 23.
    MacGilchrist AJ, Christensen J, Rick GA. The distribution of myelinated nerve fibers in the mature opossum esophagus. J Auton Nerv Syst. 1991;35:227–35.PubMedCrossRefGoogle Scholar
  24. 24.
    Doty RW. Neural organization of deglutition. In: Code CF, editor. Handbook of physiology, vol. 4. Washington, DC: American Psychological Society; 1968. p. 1861–902.Google Scholar
  25. 25.
    Pandolfino JE, Kahrilas PJ. AGA technical review on the clinical use of esophageal manometry. Gastroenterology. 2005;128:209–24.PubMedCrossRefGoogle Scholar
  26. 26.
    Murray JA, Clouse RE, Conklin JL. Components of the standard oesophageal manometry. Neurogastroenterol Motil. 2003;15:591–606.PubMedCrossRefGoogle Scholar
  27. 27.
    Dent J. A new technique for continuous sphincter pressure measurement. Gastroenterology. 1976;71:263–7.PubMedGoogle Scholar
  28. 28.
    Clouse RE, Staiano A. Topography of the esophageal peristaltic pressure wave. Am J Physiol. 1991;261: G677–84.PubMedGoogle Scholar
  29. 29.
    Clouse RE, Prakash C. Topographic esophageal manometry: an emerging clinical and investigative approach. Dig Dis. 2000;18:64–74.PubMedCrossRefGoogle Scholar
  30. 30.
    Clouse RE, Staiano A, Alrakawi A, Haroian L. Application of topographical methods to clinical esophageal manometry. Am J Gastroenterol. 2000;95: 2720–30.PubMedCrossRefGoogle Scholar
  31. 31.
    Clouse RE, Parks TR, Haroian LR. Novel solid-state technology simplifies high-resolution manometry (HRM) for clinical use. Gastroenterology. 2004;126:A638.Google Scholar
  32. 32.
    Kahrilas PJ. Esophageal motor disorders in terms of high-resolution esophageal pressure topography: what has changed? Am J Gastroenterol. 2010;105:981–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Salvador R, Dubecz A, Polomsky M, Gellerson O, Jones CE, Raymond DP, Watson TJ, Peters JH. A new era in esophageal diagnostics: the image-based paradigm of high-resolution manometry. J Am Coll Surg. 2009;208:1035–44.PubMedCrossRefGoogle Scholar
  34. 34.
    Soudagar AS, Sayuk GS, Gyawali CP. Learners Favor High Resolution Esophageal Manometry With Better Diagnostic Accuracy Over Conventional Line Tracings. Gut 2012;61:798–803.Google Scholar
  35. 35.
    Bulsiewicz WJ, Kahrilas PJ, Kwiatek MA, Ghosh SK, Meek A, Pandolfino JE. Esophageal pressure topography criteria indicative of incomplete bolus clearance: a study using high-resolution impedance manometry. Am J Gastroenterol. 2009;104:2721–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Cheeney G, Remes-Troche JM, Attaluri A, Rao SS. Investigation of anal motor characteristics of the sensorimotor response (SMR) using 3-D anorectal pressure topography. Am J Physiol Gastrointest Liver Physiol. 2011;300:G236–40.PubMedCrossRefGoogle Scholar
  37. 37.
    Clouse RE, Staiano A. Topography of normal and high-amplitude esophageal peristalsis. Am J Physiol. 1993;265:G1098–107.PubMedGoogle Scholar
  38. 38.
    Li M, Brasseur BJ, Hsieh PY, Nicosia M, Kern MK, Massey BT. A conversion methodology to analyze manometric pressure in space-time. Gastroenterology. 1994;106:A530.Google Scholar
  39. 39.
    Staiano A, Clouse RE. The effects of cisapride on the topography of oesophageal peristalsis. Aliment Pharmacol Ther. 1996;10:875–82.PubMedCrossRefGoogle Scholar
  40. 40.
    Massey BT, Dodds WJ, Hogan WJ, Brasseur JG, Helm JF. Abnormal esophageal motility. An analysis of concurrent radiographic and manometric findings. Gastroenterology. 1991;101:344–54.PubMedGoogle Scholar
  41. 41.
    Clouse RE, Staiano A. Contraction abnormalities of the esophageal body in patients referred to manometry. A new approach to manometric classification. Dig Dis Sci. 1983;28:784–91.PubMedCrossRefGoogle Scholar
  42. 42.
    Kahrilas PJ, Dodds WJ, Hogan WJ, Kern M, Arndorfer RC, Reece A. Esophageal peristaltic dysfunction in peptic esophagitis. Gastroenterology. 1986;91:897–904.PubMedGoogle Scholar
  43. 43.
    Richter JE, Wu WC, Johns DN, Blackwell JN, Nelson 3rd JL, Castell JA, Castell DO. Esophageal manometry in 95 healthy adult volunteers. Variability of pressures with age and frequency of “abnormal” contractions. Dig Dis Sci. 1987;32:583–92.PubMedCrossRefGoogle Scholar
  44. 44.
    Humphries TJ, Castell DO. Pressure profile of esophageal peristalsis in normal humans as measured by direct intraesophageal transducers. Am J Dig Dis. 1977;22:641–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Kahrilas PJ, Dodds WJ, Hogan WJ. Effect of peristaltic dysfunction on esophageal volume clearance. Gastroenterology. 1988;94:73–80.PubMedGoogle Scholar
  46. 46.
    Clouse RE, Staiano A, Landau DW, Schlachter JL. Manometric findings during spontaneous chest pain in patients with presumed esophageal “spasms”. Gastroenterology. 1983;85:395–402.PubMedGoogle Scholar
  47. 47.
    Clouse RE, Hallett JL. Velocity of peristaltic propagation in distal esophageal segments. Dig Dis Sci. 1995;40:1311–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Hewson EG, Ott DJ, Dalton CB, Chen YM, Wu WC, Richter JE. Manometry and radiology. Complementary studies in the assessment of esophageal motility disorders. Gastroenterology. 1990;98:626–32.PubMedGoogle Scholar
  49. 49.
    Ghosh SK, Kahrilas PJ, Lodhia N, Pandolfino JE. Utilizing intraluminal pressure differences to predict esophageal bolus flow dynamics. Am J Physiol Gastrointest Liver Physiol. 2007;293:G1023–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Edmundowicz SA, Clouse RE. Shortening of the esophagus in response to swallowing. Am J Physiol. 1991;260:G512–6.PubMedGoogle Scholar
  51. 51.
    Pouderoux P, Lin S, Kahrilas PJ. Timing, propagation, coordination, and effect of esophageal shortening during peristalsis. Gastroenterology. 1997;112:1147–54.PubMedCrossRefGoogle Scholar
  52. 52.
    Nicosia MA, Brasseur JG, Liu JB, Miller LS. Local longitudinal muscle shortening of the human esophagus from high-frequency ultrasonography. Am J Physiol Gastrointest Liver Physiol. 2001;281:G1022–33.PubMedGoogle Scholar
  53. 53.
    Gyawali CP, Kushnir VM. High-resolution manometric characteristics help differentiate types of distal esophageal obstruction in patients with peristalsis. Neurogastroenterol Motil. 2011;23(6):502-e197.PubMedCrossRefGoogle Scholar
  54. 54.
    Ghosh SK, Janiak P, Fox M, Schwizer W, Hebbard GS, Brasseur JG. Physiology of the oesophageal ­transition zone in the presence of chronic bolus ­retention: studies using concurrent high resolution manometry and digital fluoroscopy. Neurogastroenterol Motil. 2008;20:750–9.PubMedCrossRefGoogle Scholar
  55. 55.
    Clouse RE, Alrakawi A, Staiano A. Intersubject and interswallow variability in topography of esophageal motility. Dig Dis Sci. 1998;43:1978–85.PubMedCrossRefGoogle Scholar
  56. 56.
    Ghosh SK, Janiak P, Schwizer W, Hebbard GS, Brasseur JG. Physiology of the esophageal pressure transition zone: separate contraction waves above and below. Am J Physiol Gastrointest Liver Physiol. 2006;290:G568–76.PubMedCrossRefGoogle Scholar
  57. 57.
    Kumar N, Porter RF, Gyawali CP. Extended intersegmental troughs (ISTs) between skeletal and smooth muscle contraction segments on high resolution manometry (HRM). Neurogastroenterol Motil. 2009;21:A117.Google Scholar
  58. 58.
    Ghosh SK, Pandolfino JE, Kwiatek MA, Kahrilas PJ. Oesophageal peristaltic transition zone defects: real but few and far between. Neurogastroenterol Motil. 2008;20:1283–90.PubMedCrossRefGoogle Scholar
  59. 59.
    Crist J, Gidda JS, Goyal RK. Intramural mechanism of esophageal peristalsis: roles of cholinergic and noncholinergic nerves. Proc Natl Acad Sci USA. 1984;81:3595–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Porter RF, Kumar N, Gyawali CP. Fragmented and failed esophageal smooth muscle contraction segments on high resolution manometry. Neurogastroenterol Motil. 2009;21:A185.Google Scholar
  61. 61.
    Clouse RE, Staiano A, Alrakawi A. Topographic ­analysis of esophageal double-peaked waves. Gastroenterology. 2000;118:469–76.PubMedCrossRefGoogle Scholar
  62. 62.
    Ghosh SK, Pandolfino JE, Zhang Q, Jarosz A, Shah N, Kahrilas PJ. Quantifying esophageal peristalsis with high-resolution manometry: a study of 75 asymptomatic volunteers. Am J Physiol Gastrointest Liver Physiol. 2006;290:G988–97.PubMedCrossRefGoogle Scholar
  63. 63.
    Roman S, Lin Z, Pandolfino JE, Kahrilas PJ. Distal contraction latency: a measure of propagation velocity optimized for esophageal pressure topography studies. Am J Gastroenterol. 2011;106(3):443–51.PubMedCrossRefGoogle Scholar
  64. 64.
    Pandolfino JE, Leslie E, Luger D, Mitchell B, Kwiatek MA, Kahrilas PJ. The contractile deceleration point: an important physiologic landmark on oesophageal pressure topography. Neurogastroenterol Motil. 2010;22:395–400. e90.PubMedCrossRefGoogle Scholar
  65. 65.
    Pandolfino JE, Fox MR, Bredenoord AJ, Kahrilas PJ. High-resolution manometry in clinical practice: utilizing pressure topography to classify oesophageal motility abnormalities. Neurogastroenterol Motil. 2009;21:796–806.PubMedCrossRefGoogle Scholar
  66. 66.
    Scherer JR, Kwiatek MA, Soper NJ, Pandolfino JE, Kahrilas PJ. Functional esophagogastric junction obstruction with intact peristalsis: a heterogeneous syndrome sometimes akin to achalasia. J Gastrointest Surg. 2009;13:2219–25.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of GastroenterologyBarnes Jewish Hospital, Washington University School of MedicineSt. LouisUSA
  2. 2.Division of GastroenterologyWashington University School of MedicineSt. LouisUSA

Personalised recommendations