Skip to main content

Overview of Deglutition and Digestion

  • Chapter
  • First Online:
Principles of Deglutition

Abstract

The gastrointestinal tract, also defined as the digestive tract, or alimentary tract, is a system in the body designed to take in food and liquids, decrease and modify the food through mechanical and chemical digestion to absorb the end products through the mucosal epithelial cells that line the intestine, primarily in the small intestine. Swallowing refers to the functions of the oral, pharyngeal, and esophageal regions that begin the process of ingestion and digestion, and transport the food to the stomach where the bolus is transformed into chyme that is further broken down in the stomach and the small intestine. Accessory organs work with the digestive tract and include the tongue, salivary glands, pancreas, liver, and gallbladder. The final products eliminated contain mostly fiber and bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Code CF, Schlegel JF. Handbook of physiology. In: Code CF, editor. Handbook of physiology, vol. IV. Washington DC: American Physiological Society; 1968.

    Google Scholar 

  2. Roberts DJ. Molecular mechanisms of development of the gastrointestinal tract. Dev Dyn. 2000;219(2):109–20.

    Article  PubMed  CAS  Google Scholar 

  3. Vander A, Sherman J, Luciano D. Human physiology: the mechanisms of body function. 8th ed. New York: McGraw Hill; 2001.

    Google Scholar 

  4. Conklin JL. Control of esophageal motor function. Dysphag Fall. 1993;8(4):311–7.

    CAS  Google Scholar 

  5. Massey BT. Physiology of oral cavity, pharynx, and upper esophageal sphincter. GI Motility Online. 2006;doi:10.1038/gimo2(May 16, 2006).

  6. Cunningham Jr ET, Sawchenko PE. Central neural control of esophageal motility: a review. Dysphagia. 1990;5(1):35–51.

    Article  PubMed  CAS  Google Scholar 

  7. Janssens J, De Wever I, Vantrappen G, Hellemans J. Peristalsis in smooth muscle esophagus after transfection and bolus deviation. Gastroenterology. 1976;71(6):1004–9.

    PubMed  CAS  Google Scholar 

  8. Hiiemae KM, Palmer JB. Food transport and bolus formation during complete feeding sequences on foods of different initial consistency. Dysphag Winter. 1999;14(1):31–42.

    Article  CAS  Google Scholar 

  9. Hiiemae KM, Palmer JB. Tongue movements in feeding and speech. Crit Rev Oral Biol Med. 2003;14(6):413–29.

    Article  PubMed  Google Scholar 

  10. Palmer JB, Hiiemae KM, Liu J. Tongue-jaw linkages in human feeding: a preliminary videofluorographic study. Arch Oral Biol. 1997;42(6):429–41.

    Article  PubMed  CAS  Google Scholar 

  11. Palmer JB, Hiiemae KM, Matsuo K, Haishima H. Volitional control of food transport and bolus formation during feeding. Physiol Behav. 2007;91(1):66–70.

    Article  PubMed  CAS  Google Scholar 

  12. Martin-Harris B, Michel Y, Castell DO. Physiologic model of oropharyngeal swallowing revisited. Otolaryngol Head Neck Surg. 2005;133(2):234–40.

    Article  PubMed  Google Scholar 

  13. Hiiemae KM, Crompton AW, Hiiemae KM, Crompton AW. Mastication, food transport, and swallowing. In: Hildebrand MBD, Liem KF, et al., editors. Functional vertebrate morphology. Cambridge, MA: Harvard University Press; 1985. p. 262–90.

    Google Scholar 

  14. Sweazey R, Bradley R. Response characteristics of lamb trigeminal neurons to stimulation of the oral cavity and epiglottis with different sensory modalities. Brain Res Bull. 1989;22:883–91.

    Article  PubMed  CAS  Google Scholar 

  15. Hiiemae KTA, Crompton A. Intra oral food transport: the fundamental mechanism of feeding. In: Carlson DS, McNamara J, editors. Muscle adaptation in the Craniofacial Region. Ann Arbor, Michigan: Center for Human Growth and Development; 1978. p. 181–208.

    Google Scholar 

  16. Sweazey RD, Bradley RM. Response characteristics of lamb pontine neurons to stimulation of the oral cavity and epiglottis with different sensory modalities. J Neurophysiol. 1993;70:1168–80.

    PubMed  CAS  Google Scholar 

  17. Kahrilas PJ. Pharyngeal structure and function. Dysphag Fall. 1993;8(4):303–7.

    CAS  Google Scholar 

  18. Jafari S, Prince RA, Kim DY, Paydarfar D. Sensory regulation of swallowing and airway protection: a role for the internal superior laryngeal nerve in humans. J Physiol. 2003;550(Pt 1):287–304.

    Article  PubMed  CAS  Google Scholar 

  19. Fujii N, Inamoto Y, Saitoh E, et al. Evaluation of swallowing using 320-detector-row multislice CT. Part I: Single- and multiphase volume scanning for three-dimensional morphological and kinematic analysis. Dysphagia. 2011;26(2):99–107.

    Article  PubMed  Google Scholar 

  20. Fox MR, Bredenoord AJ. Oesophageal high-resolution manometry: moving from research into clinical practice. Gut. 2008;57(3):405–23.

    Article  PubMed  CAS  Google Scholar 

  21. Kahrilas PJ, Lin S, Chen J, Logemann JA. Three-dimensional modeling of the oropharynx during swallowing. Radiology. 1995;194(2):575–9.

    PubMed  CAS  Google Scholar 

  22. Stavness I, Hannam AG, Lloyd JE, Fall CH. An integrated dynamic jaw and laryngeal model constructd from CT data. In: Harders M, Szekely G, eds. Berlin: Springer; 2006:169–77.

    Google Scholar 

  23. Kahrilas PJ, Dodds WJ, Dent J, Logemann JA, Shaker R. Upper esophageal sphincter function during deglutition. Gastroenterology. 1988;95(1):52–62.

    PubMed  CAS  Google Scholar 

  24. Lang IM, Dantas RO, Cook IJ, Dodds WJ. Videoradiographic, manometric, and electromyographic analysis of canine upper esophageal sphincter. Am J Physiol. 1991;260(6 Pt 1):G911–9.

    PubMed  CAS  Google Scholar 

  25. Altschuler SM, Bao XM, Bieger D, Hopkins DA, Miselis RR. Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol. 1989;283(2):248–68.

    Article  PubMed  CAS  Google Scholar 

  26. Altschuler SM, Bao XM, Miselis RR. Dendritic architecture of nucleus ambiguus motoneurons projecting to the upper alimentary tract in the rat. J Comp Neurol. 1991;309(3):402–14.

    Article  PubMed  CAS  Google Scholar 

  27. Broussard DL, Altschuler SM. Central integration of swallow and airway-protective reflexes. Am J Med. 2000;108(Suppl 4a):62S–7.

    Article  PubMed  Google Scholar 

  28. Broussard DL, Altschuler SM. Brainstem viscerotopic organization of afferents and efferents involved in the control of swallowing. Am J Med. 2000;108(Suppl 4a):79S–86.

    Article  PubMed  Google Scholar 

  29. Lang IM, Dean C, Medda BK, Aslam M, Shaker R. Differential activation of medullary vagal nuclei during different phases of swallowing in the cat. Brain Res. 2004;1014(1–2):145–63.

    Article  PubMed  CAS  Google Scholar 

  30. Roman C, Orengo M, Tieffenbach L. [Electro­myographic study of esophageal smooth muscle in cats]. J Physiol (Paris). 1969;61 Suppl 2:390.

    Google Scholar 

  31. Roman C, Tieffenbach L. [Esophageal smooth muscle motility after bivagotomy. Electromyographic study (E.M.G)]. J Physiol (Paris). 1971;63(8):733–62.

    CAS  Google Scholar 

  32. Roman C, Tieffenbach L. Recording the unit activity of vagal motor fibers innervating the baboon esophagus. J Physiol (Paris). 1972;64(5):479–506.

    CAS  Google Scholar 

  33. Janssens J, Vantrappen G, Hellemans J. Neural control of primary esophageal peristalsis. Gastroenterology. 1978;74(4):801–3.

    PubMed  CAS  Google Scholar 

  34. Pedersen AM, Bardow A, Jensen SB, Nauntofte B. Saliva and gastrointestinal functions of taste, mastication, swallowing, and digestion. Oral Dis. 2002;8:117–29.

    Article  PubMed  CAS  Google Scholar 

  35. Sawczuk A, Mosier KM. Neural control of tongue movement with respect to respiration and swallowing. Crit Rev Oral Biol Med. 2001;12(1):18–37.

    Article  PubMed  CAS  Google Scholar 

  36. Miller AJ. Oral and pharyngeal reflexes in the mammalian nervous system: their diverse range in complexity and the pivotal role of the tongue. Crit Rev Oral Biol Med. 2002;13(5):409–25.

    Article  PubMed  CAS  Google Scholar 

  37. Sweazey R, Bradley R. Responses of neurons in the lamb nucleus tractus solitarius to stimulation of the caudal oral cavity and epiglottis with different stimulus modalities. Brain Res. 1989;480:133–50.

    Article  PubMed  CAS  Google Scholar 

  38. Sweazey R, Bradley R. Central connections of the lingual-tonsillar branch of the glossopharyngeal nerve and the superior laryngeal nerve in lamb. J Comp Neurol. 1986;245:471–82.

    Article  PubMed  CAS  Google Scholar 

  39. Sweazey R, Bradley R. Response of lamb nucleus of the solitary tract neurons to chemical stimulation of the epiglottis. Brain Res. 1988;439:195–210.

    Article  PubMed  CAS  Google Scholar 

  40. Kajii Y, Shingai T, Kitagawa J, et al. Sour taste stimulation facilitates reflex swallowing from the pharynx and larynx in the rat. Physiol Behav. 2002;77(2–3): 321–5.

    Article  PubMed  CAS  Google Scholar 

  41. Lang IM. Brain stem control of the phases of swallowing. Dysphagia. 2009;24(3):333–48.

    Article  PubMed  Google Scholar 

  42. Lund JP. Mastication and its control by the brain stem. Crit Rev Oral Biol Med. 1991;2(1):33–64.

    PubMed  CAS  Google Scholar 

  43. Lund JP, Kolta A. Generation of the central masticatory pattern and its modification by sensory feedback. Dysphagia. 2006;21(3):167–74.

    Article  PubMed  Google Scholar 

  44. Huang CS, Hiraba H, Murray GM, Sessle BJ. Topographical distribution and functional properties of cortically induced rhythmical jaw movements in the monkey (Macaca fascicularis). J Neurophysiol. 1989;61(3):635–50.

    PubMed  CAS  Google Scholar 

  45. Hamdy S, Mikulis DJ, Crawley A, et al. Cortical activation during human volitional swallowing: an event-related fMRI study. Am J Physiol. 1999;277(1 Pt 1): G219–25.

    PubMed  CAS  Google Scholar 

  46. Jean A. Brainstem control of swallowing: localization and organization of the central pattern generator for swallowing. In: Taylor A, editor. Neurophysiology of the Jaws and Teeth. London: MacMillan Press; 1990.

    Google Scholar 

  47. Daniels SK, Corey DM, Fraychinaud A, DePolo A, Foundas AL. Swallowing lateralization: the effects of modified dual-task interference. Dysphagia. 2006;21(1):21–7.

    Article  PubMed  Google Scholar 

  48. Tell F, Fagni L, Jean A. Neurons of the nucleus tractus solitarius, in vitro, generate bursting activities by solitary tract stimulation. Exp Brain Res. 1990;79:436–40.

    Article  PubMed  CAS  Google Scholar 

  49. Tell F, Jean A. Bursting discharges evoked in vitro , by solitary tract stimulation or application of N-methyl-D-aspartate, in neurons of the rat nucleus tractus solitarii. Neurosci Lett. 1991;124:221–4.

    Article  PubMed  CAS  Google Scholar 

  50. Marder E, Bucher D. Central pattern generators and the control of rhythmic movements. Curr Biol. 2001;11(23):R986–96.

    Article  PubMed  CAS  Google Scholar 

  51. Theurer JA, Czachorowski KA, Martin LP, Martin RE. Effects of oropharyngeal air-pulse stimulation on swallowing in healthy older adults. Dysphagia. 2009;24(3):302–13.

    Article  PubMed  Google Scholar 

  52. Doty R. Influence of stimulus pattern on reflex deglutition. Am J Physiol. 1951;166:142–55.

    PubMed  CAS  Google Scholar 

  53. Kahrilas PJ, Logemann JA. Volume accommodation during swallowing. Dysphagia. 1993;8(3):259–65.

    Article  PubMed  CAS  Google Scholar 

  54. Martin RE, Goodyear BG, Gati JS, Menon RS. Cerebral cortical representation of automatic and volitional swallowing in humans. J Neurophysiol. 2001;85(2):938–50.

    PubMed  CAS  Google Scholar 

  55. Soros P, Inamoto Y, Martin RE. Functional brain imaging of swallowing: an activation likelihood estimation meta-analysis. Hum Brain Mapp. 2009;30(8):2426–39.

    Article  PubMed  Google Scholar 

  56. Robbins J, Levin RL. Swallowing after unilateral stroke of the cerebral cortex: preliminary experience. Dysphagia. 1988;3(1):11–7.

    Article  PubMed  CAS  Google Scholar 

  57. Robbins J, Levine RL, Maser A, Rosenbek JC, Kempster GB. Swallowing after unilateral stroke of the cerebral hemisphere. Arch Phys Med Rehabil. 1993;74:1295–300.

    Article  PubMed  CAS  Google Scholar 

  58. Martin RE, Kemppainen P, Masuda Y, Yao D, Murray GM, Sessle BJ. Features of cortically evoked swallowing in the awake primate (Macaca fascicularis). J Neurophysiol. 1999;82(3):1529–41.

    PubMed  CAS  Google Scholar 

  59. Cook IJ. Diagnostic evaluation of dysphagia. Nat Clin Pract Gastroenterol Hepatol. 2008;5(7):393–403.

    Article  PubMed  Google Scholar 

  60. Martin RE. Neuroplasticity and swallowing. Dysphagia. 2009;24(2):218–29.

    Article  PubMed  Google Scholar 

  61. Butefisch CM, Davis BC, Wise SP, et al. Mechanisms of use-dependent plasticity in the human motor cortex. Proc Natl Acad Sci U S A. 2000;97(7):3661–5.

    Article  PubMed  CAS  Google Scholar 

  62. Fridman EA, Hanakawa T, Chung M, Hummel F, Leiguarda RC, Cohen LG. Reorganization of the human ipsilesional premotor cortex after stroke. Brain. 2004;127(Pt 4):747–58.

    Article  PubMed  Google Scholar 

  63. Hamdy S. The organisation and re-organisation of human swallowing motor cortex. Suppl Clin Neurophysiol. 2003;56:204–10.

    Article  PubMed  Google Scholar 

  64. Hamdy S, Aziz Q, Rothwell JC, et al. Recovery of swallowing after dysphagic stroke relates to functional reorganization in the intact motor cortex. Gastroenterology. 1998;115(5):1104–12.

    Article  PubMed  CAS  Google Scholar 

  65. Taub E, Uswatte G, Morris DM. Improved motor recovery after stroke and massive cortical reorganization following Constraint-Induced Movement therapy. Phys Med Rehabil Clin N Am. 2003;14(1 Suppl): S77–91. ix.

    Article  PubMed  Google Scholar 

  66. Hummel F, Cohen LG. Improvement of motor function with noninvasive cortical stimulation in a patient with chronic stroke. Neurorehabil Neural Repair. 2005;19(1):14–9.

    Article  PubMed  Google Scholar 

  67. Teismann IK, Steinstrater O, Warnecke T, et al. Tactile thermal oral stimulation increases the cortical representation of swallowing. BMC Neurosci. 2009;10:71.

    Article  PubMed  Google Scholar 

  68. Hamdy S, Aziz Q, Rothwell JC, Hobson A, Barlow J, Thompson DG. Cranial nerve modulation of human cortical swallowing motor pathways. Am J Physiol. 1997;272(4 Pt 1):G802–8.

    PubMed  CAS  Google Scholar 

  69. Hamdy S, Aziz Q, Rothwell JC, Hobson A, Thompson DG. Sensorimotor modulation of human cortical swallowing pathways. J Physiol. 1998;506(Pt 3):857–66.

    Article  PubMed  CAS  Google Scholar 

  70. Babaei A, Kern M, Antonik S, et al. Enhancing effects of flavored nutritive stimuli on cortical swallowing network activity. Am J Physiol Gastrointest Liver Physiol. 2010;299(2):G422–9.

    Article  PubMed  CAS  Google Scholar 

  71. Robbins J, Kays SA, Gangnon RE, et al. The effects of lingual exercise in stroke patients with dysphagia. Arch Phys Med Rehabil. 2007;88(2):150–8.

    Article  PubMed  Google Scholar 

  72. Robbins J, Gangnon RE, Theis SM, Kays SA, Hewitt AL, Hind JA. The effects of lingual exercise on swallowing in older adults. J Am Geriatr Soc. 2005;53(9): 1483–9.

    Article  PubMed  Google Scholar 

  73. Burnett TA, Mann EA, Cornell SA, Ludlow CL. Laryngeal elevation achieved by neuromuscular stimulation at rest. J Appl Physiol. 2003;94(1): 128–34.

    PubMed  Google Scholar 

  74. Burnett TA, Mann EA, Stoklosa JB, Ludlow CL. Self-triggered functional electrical stimulation during swallowing. J Neurophysiol. 2005;94(6):4011–8.

    Article  PubMed  Google Scholar 

  75. Hamdy S, Xue S, Valdez D, Diamant NE. Induction of cortical swallowing activity by transcranial magnetic stimulation in the anaesthetized cat. Neurogastroenterol Motil. 2001;13(1):65–72.

    Article  PubMed  CAS  Google Scholar 

  76. Robbins J, Butler SG, Daniels SK, et al. Swallowing and dysphagia rehabilitation: translating principles of neural plasticity into clinically oriented evidence. J Speech Lang Hear Res. 2008;51(1):S276–300.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur J. Miller PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Miller, A.J. (2013). Overview of Deglutition and Digestion. In: Shaker, R., Belafsky, P., Postma, G., Easterling, C. (eds) Principles of Deglutition. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3794-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3794-9_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3793-2

  • Online ISBN: 978-1-4614-3794-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics