Skip to main content

Development, Anatomy, and Physiology of the Esophagus

  • Chapter
  • First Online:
Principles of Deglutition

Abstract

Esophageal embryonic development and anatomic features play an important role in both normal function and common pathology of the esophagus. The embryonic endoderm provides the scaffolding for the future esophagus, which will ultimately connect the pharynx to the stomach. The developed esophagus has close anatomic relationships with the cervical spine, thoracic aorta, left atrium, and diagphragmatic haitus—relationships associated with esophageal pathology. Esophageal musculature is composed of an external layer of longitudinal fibers and an internal layer of circular fibers which provide peristaltic force; the backflow of food and acidic gastric contents is prevented at the level of two high-pressure regions: the upper and the lower esophageal sphincters. Microscopically, the esophageal wall is composed of four layers: internal mucosa, submucosa, muscularis propria, and adventitia. The esophagus has a segmental arterial supply without dedicated vasculature. Venous drainage is notable for being a portal-caval connection susceptible to portal hypertension. Esophageal innervation occurs via the sympathetic and parasympathetic nervous systems, as well as the intrinsic enteric nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Larsen W. Development of the gastrointestinal tract. In: Sherman LS, Potter SS, Scott WJ, editors. Human embryology. 3rd ed. Philadelphia: Churchill Livingstone; 2001. p. 235–64.

    Google Scholar 

  2. Kedinger M, et al. Epithelial-mesenchymal interactions in intestinal epithelial differentiation. Scand J Gastroenterol Suppl. 1988;151:62–9.

    Article  PubMed  CAS  Google Scholar 

  3. Larsen W. Embryonic folding. In: Sherman LS, Potter SS, Scott WJ, editors. Human embryology. 3rd ed. Philadelphia: Churchill Livingstone; 2001. p. 133–4.

    Google Scholar 

  4. Roberts DJ. Molecular mechanisms of development of the gastrointestinal tract. Dev Dyn. 2000;219(2):109–20.

    Article  PubMed  CAS  Google Scholar 

  5. Le Douarin NM, et al. Neural crest cell plasticity and its limits. Development. 2004;131(19):4637–50.

    Article  PubMed  Google Scholar 

  6. Zuidema GD. Shackelford’s Surgery of the alimentary tract, vol. 1. Philadelphia: WB Saunders; 1996. p. 1–35.

    Google Scholar 

  7. Skandalakis JE, Ellis H. Embryologic and anatomic basis of esophageal surgery. Surg Clin North Am. 2000;80(1):85–155.

    Article  PubMed  CAS  Google Scholar 

  8. Kedinger M, et al. Smooth muscle actin expression during rat gut development and induction in fetal skin fibroblastic cells associated with intestinal embryonic epithelium. Differentiation. 1990;43(2):87–97.

    Article  PubMed  CAS  Google Scholar 

  9. Wallace AS, Burns AJ. Development of the enteric nervous system, smooth muscle and interstitial cells of Cajal in the human gastrointestinal tract. Cell Tissue Res. 2005;319(3):367–82.

    Article  PubMed  Google Scholar 

  10. Fu M, et al. Embryonic development of the ganglion plexuses and the concentric layer structure of human gut: a topographical study. Anat Embryol (Berl). 2004;208(1):33–41.

    Article  CAS  Google Scholar 

  11. Newman CJ, et al. Interstitial cells of Cajal are normally distributed in both ganglionated and aganglionic bowel in Hirschsprung’s disease. Pediatr Surg Int. 2003;19(9–10):662–8.

    Article  PubMed  CAS  Google Scholar 

  12. Ward SM. Interstitial cells of Cajal in enteric neurotransmission. Gut. 2000;47 suppl 4:40–3. discussion iv, 52.

    Google Scholar 

  13. Chalazonitis A, et al. Bone morphogenetic protein-2 and -4 limit the number of enteric neurons but promote development of a TrkC-expressing neurotrophin-3-ependent subset. J Neurosci. 2004;24(17): 4266–82.

    Article  PubMed  CAS  Google Scholar 

  14. Manie S, et al. The RET receptor: function in development and dysfunction in congenital malformation. Trends Genet. 2001;17(10):580–9.

    Article  PubMed  CAS  Google Scholar 

  15. Ramalho-Santos M, Melton DA, McMahon AP. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development. 2000;127(12): 2763–72.

    PubMed  CAS  Google Scholar 

  16. Gershon MDV. Genes, lineages, and tissue interactions in the development of the enteric nervous system. Am J Physiol. 1998;275(5 pt 1):G869–73.

    PubMed  CAS  Google Scholar 

  17. Amiel J, Lyonnet S. Hirschsprung disease, associated syndromes, and genetics: a review. J Med Genet. 2001;38(11):729–39.

    Article  PubMed  CAS  Google Scholar 

  18. Bowie JD, Clair MR. Fetal swallowing and regurgitation: observation of normal and abnormal activity. Radiology. 1982;144(4):877–8.

    PubMed  CAS  Google Scholar 

  19. Malinger G, Levine A, Rotmensch S. The fetal esophagus: anatomical and physiological ultrasonographic characterization using a high-resolution linear transducer. Ultrasound Obstet Gynecol. 2004;24(5):500–5.

    Article  PubMed  CAS  Google Scholar 

  20. Castell DO, Richter JE. The esophagus. 3rd ed. Philadelphia: Lippincott, Williams & Wilkins; 1999. p. 33.

    Google Scholar 

  21. Kos MP, van Royen BJ, David EF, Mahieu HF. Anterior cervical osteophytes resulting in severe dysphagia and aspiration: two case reports and literature review. J Laryngol Otol. 2009;123(10):1169–73.

    Article  PubMed  CAS  Google Scholar 

  22. Sobotta J, Putz R, Pabst R. Atlas der anatomie des menschen. 13th ed. Philadelphia: Lippincott, Williams, & Wilkins; 2001. English version.

    Google Scholar 

  23. Pearson G, Cooper J, Deslauriers J. Esophageal surgery. 2nd ed. Philadelphia: Churchill. Livingstone; 2002. p. 637–54.

    Google Scholar 

  24. Sivarao DV, Goyal RK. Functional anatomy and physiology of the upper esophageal sphincter. Am J Med. 2000;108(Suppl 4a):27S–37.

    Article  PubMed  Google Scholar 

  25. Achkar E. Zenker’s Diverticulum. Dig Dis. 1998;16(3):144–51.

    Article  PubMed  CAS  Google Scholar 

  26. Gerhardt D, et al. Human upper esophageal sphincter pressure profile. Am J Physiol. 1980;239(1):G49–52.

    PubMed  CAS  Google Scholar 

  27. Lang IM, Shaker R. Anatomy and physiology of the upper esophageal sphincter. Am J Med. 1997;103(5A):50S–5.

    Article  PubMed  CAS  Google Scholar 

  28. Leaper M, Zhang M, Dawes PJ. An anatomical protrusion exists on the posterior hypopharyngeal wall in some elderly cadavers. Dysphagia. 2005;20(1):8–14. Winter.

    Article  PubMed  Google Scholar 

  29. Ebert EC, Hagspiel KD. Gastrointestinal and hepatic manifestations of rheumatoid arthritis. Dig Dis Sci. 2011;56(2):295–302.

    Article  PubMed  Google Scholar 

  30. Kumoi K, Ohtsuki N, Teramoto Y. Pharyngo-esophageal diverticulum arising from Laimer’s triangle. Eur Arch Otorhinolaryngol. 2001;258(4):184–7.

    Article  PubMed  CAS  Google Scholar 

  31. Liebermann-Meffert D, et al. Muscular equivalent of the lower esophageal sphincter. Gastroenterology. 1979;76(1):31–8.

    PubMed  CAS  Google Scholar 

  32. Delattre JF, et al. Functional anatomy of the gastroesophageal junction. Surg Clin North Am. 2000;80(1): 241–60.

    Article  PubMed  CAS  Google Scholar 

  33. Preiksaitis HG, Diamant NE. Regional differences in cholinergic activity of muscle fibers from the human gastroesophageal junction. Am J Physiol. 1997;272(6 Pt 1):G1321–7.

    PubMed  CAS  Google Scholar 

  34. Mittal RK, Balaban DH. The esophagogastric junction. N Engl J Med. 1997;336(13):924–32.

    Article  PubMed  CAS  Google Scholar 

  35. Boyce H, Boyce G. Esophagus: anatomy and structureal anomalies. In: Yamada T, Alpers DH, Kaplowitz N, Laine L, Owyang C, Powell DW, editors. Textbook of gastroenterology, vol. 1. 4th ed. Philadelphia: Lippincott William & Wilkins; 2003. p. 1148–65.

    Google Scholar 

  36. De La Pava S, et al. Melanosis of the esophagus. Cancer. 1963;16:48–50.

    Article  Google Scholar 

  37. DiCostanzo DP, Urmacher C. Primary malignant melanoma of the esophagus. Am J Surg Pathol. 1987;11(1): 46–52.

    Article  PubMed  CAS  Google Scholar 

  38. Hopwood D, Logan KR, Bouchier IA. The electron microscopy of normal human oesophageal epithelium. Virchows Arch B Cell Pathol. 1978;26(4): 345–58.

    PubMed  CAS  Google Scholar 

  39. Sternberg S. Histology for pathologists. 2nd ed. New York: Raven Press; 1997.

    Google Scholar 

  40. Dellon ES, Aderoju A, Woosley JT, Sandler RS, Shaheen NJ. Variability in diagnostic criteria for eosinophilic esophagitis: a systematic review. Am J Gastroenterol. 2007;102(10):2300–13.

    Article  PubMed  Google Scholar 

  41. Borysenko M, Beringer T. Functional histology. 3rd ed. Boston: Little, Brown & Co.; 1989. p. 20.

    Google Scholar 

  42. Christensen J, Wingate DL, Gregory RA. A guide to gastrointestinal motility. Bristol: John Wright & Sons Ltd.; 1983. p. 157–97.

    Google Scholar 

  43. Long JD, Orlando RC. Esophageal submucosal glands: structure and function. Am J Gastroenterol. 1999;94(10):2818–24.

    Article  PubMed  CAS  Google Scholar 

  44. Ghosh SK, et al. Physiology of the esophageal pressure transition zone: separate contraction waves above and below. Am J Physiol Gastrointest Liver Physiol. 2005;290(3):568–76.

    Article  Google Scholar 

  45. Williams DB, Payne WS. Observations on esophageal blood supply. Mayo Clin Proc. 1982;57(7):448–53.

    PubMed  CAS  Google Scholar 

  46. Akiyama H. Surgery for carcinoma of the esophagus. Curr Probl Surg. 1980;17(2):53–120.

    Article  PubMed  CAS  Google Scholar 

  47. Orringer MB, Orringer JS. Esophagectomy without thoracotomy: a dangerous operation? J Thorac Cardiovasc Surg. 1983;85(1):72–80.

    PubMed  CAS  Google Scholar 

  48. Vianna A, et al. Normal venous circulation of the gastroesophageal junction. A route to understanding varices. Gastroenterology. 1987;93(4):876–89.

    PubMed  CAS  Google Scholar 

  49. Kitano S, et al. Venous anatomy of the lower oesophagus in portal hypertension: practical implications. Br J Surg. 1986;73(7):525–31.

    Article  PubMed  CAS  Google Scholar 

  50. Pashankar D, Jamieson DH, Israel DM. Downhill esophageal varices. J Pediatr Gastroenterol Nutr. 1999;29(3):360–2.

    Article  PubMed  CAS  Google Scholar 

  51. Dell’era A, Bosch J. Review article: the relevance of portal pressure and other risk factors in acute gastro-oesophageal variceal bleeding. Aliment Pharmacol Ther. 2004;20 Suppl 3:8–15. discussion 16–7.

    Article  PubMed  Google Scholar 

  52. Zuidema GD. Shackelford’s Surgery of the alimentary tract, W.B. Saunders company, Philadelphia, Pennsylvania. 1996. I- esophagus: p. 1–35. World J Surg. 1994;18(2):266–72.

    Article  Google Scholar 

  53. Goyal R, Sivarao D. Functional anatomy and physiology of swallowing and esophageal motility. In: Catell OD, Richter JE, editors. The esophagus. 3rd ed. Philadelphia: Lippincott-Raven; 1999. p. 23.

    Google Scholar 

  54. Bannister LH, Berry MM, Collins P. Gray’s anatomy. 38th ed. New York: Churchill Livingstone; 1995. p. 1637.

    Google Scholar 

  55. Robertson D. Primer on the autonomic nervous ­system. 2nd ed. Boston: Academic; 2004. p. 40.

    Google Scholar 

  56. DiMarino AJ, Cohen S. The adrenergic control of lower esophageal sphincter function. An experimental model of denervation supersensitivity. J Clin Invest. 1973;52(9):2264–71.

    Article  PubMed  CAS  Google Scholar 

  57. Saper CB. The central autonomic nervous system: conscious visceral perception and autonomic pattern generation. Annu Rev Neurosci. 2002;25:433–69.

    Article  PubMed  CAS  Google Scholar 

  58. Craig AD. An ascending general homeostatic afferent pathway originating in lamina I. Prog Brain Res. 1996;107:225–42.

    Article  PubMed  CAS  Google Scholar 

  59. Strack AM, et al. A general pattern of CNS innervation of the sympathetic outflow demonstrated by transneuronal pseudorabies viral infections. Brain Res. 1989;491(1):156–62.

    Article  PubMed  CAS  Google Scholar 

  60. Goyal RK, Hirano I. The enteric nervous system. N Engl J Med. 1996;334(17):1106–15.

    Article  PubMed  CAS  Google Scholar 

  61. Collman PI, Tremblay L, Diamant NE. The distribution of spinal and vagal sensory neurons that innervate the esophagus of the cat. Gastroenterology. 1992; 103(3):817–22.

    PubMed  CAS  Google Scholar 

  62. Wank M, Neuhuber WL. Local differences in vagal afferent innervation of the rat esophagus are reflected by neurochemical differences at the level of the sensory ganglia and by different brainstem projections. J Comp Neurol. 2001;435(1):41–59.

    Article  PubMed  CAS  Google Scholar 

  63. Altschuler SM, et al. Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts. J Comp Neurol. 1989;283(2):248–68.

    Article  PubMed  CAS  Google Scholar 

  64. Cunningham Jr ET, Sawchenko PE. Central neural control of esophageal motility: a review. Dysphagia. 1990;5(1):35–51.

    Article  PubMed  CAS  Google Scholar 

  65. Holstege G, et al. Location of motoneurons innervating soft palate, pharynx and upper esophagus. Anatomical evidence for a possible swallowing center in the Pontine reticular formation. An HRP and autoradiographical tracing study. Brain Behav Evol. 1983;23(1–2):47–62.

    Article  PubMed  CAS  Google Scholar 

  66. Paintal AS. Vagal afferent fibres. Ergeb Physiol. 1963;52:74–156.

    PubMed  CAS  Google Scholar 

  67. Kern MK, et al. Identification and characterization of cerebral cortical response to esophageal mucosal acid exposure and distention. Gastroenterology. 1998; 115(6):1353–62.

    Article  PubMed  CAS  Google Scholar 

  68. Christensen J, Robison BA. Anatomy of the myenteric plexus of the opossum esophagus. Gastroenterology. 1982;83(5):1033–42.

    PubMed  CAS  Google Scholar 

  69. Christensen J, et al. Arrangement of the myenteric plexus throughout the gastrointestinal tract of the opossum. Gastroenterology. 1983;85(4):890–9.

    PubMed  CAS  Google Scholar 

  70. Gabella G. Innervation of the gastrointestinal tract. Int Rev Cytol. 1979;59:129–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Braden Kuo MD, BSc, MSc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Staller, K., Kuo, B. (2013). Development, Anatomy, and Physiology of the Esophagus. In: Shaker, R., Belafsky, P., Postma, G., Easterling, C. (eds) Principles of Deglutition. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3794-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3794-9_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3793-2

  • Online ISBN: 978-1-4614-3794-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics