Manometric Assessment of the Esophagus

Chapter

Abstract

The methods for manometric evaluation of esophageal motor function have become much more sophisticated in the last decade. The advent of high-resolution manometry allows us for the first time to view esophageal motor function as a complete spatial and temporal continuum from the pharynx to the stomach. It makes the study more comfortable for the patient, more easily and reliably done by the nurse or technician, and more easily interpreted by the clinician. This chapter provides an introduction to high-resolution manometry, identifies what manometry measures, explains manometry equipment and describes how esophageal manometry is done. It reveals the color topographic patterns seen with normal and abnormal esophageal motor function.

Keywords

Catheter Radar Respiration Assure Caffeine 

References

  1. 1.
    Steff JJ, Dodds WJ, Hogan WJ, Linehan JH, Stewart ET. Intraluminal esophageal manometry: an analysis of variables affecting recording fidelity of peristaltic pressures. Gastroenterology. 1974;67:221–30.Google Scholar
  2. 2.
    Clouse R, Staiano A. Topography of the esophageal peristaltic pressure wave. Am J Physiol. 1991;261:G677–84.PubMedGoogle Scholar
  3. 3.
    Clouse R, Staiano A. Topography of normal and high-amplitude esophageal peristalsis. Am J Physiol. 1993;265:G1098–107.PubMedGoogle Scholar
  4. 4.
    Kahrilas PJ, Dodds WJ, Dent J, Logemann JA, Shaker R. Upper esophageal sphincter function during deglutition. Gastroenterology. 1988;95:52–62.PubMedGoogle Scholar
  5. 5.
    Roman C. Nervous control of esophageal peristalsis. J Physiol. 1966;58:79–108.Google Scholar
  6. 6.
    Christensen J, Robison BA. Anatomy of the myenteric plexus of the opossum esophagus. Gastroenterology. 1982;83:1033–42.PubMedGoogle Scholar
  7. 7.
    Conklin JL, Christensen J. Motor functions of the esophagus. In: Johnson LR, Christensen J, Alpers D, Jacobsen ED, Walsh J, editors. Physiology of the gastrointestinal tract (Chapter 4). 3rd ed. New York: Raven Press; 1994. p. 33–40.Google Scholar
  8. 8.
    Doty RW. Neural organization of deglutition. In: Code CF, editor. Handbook of physiology, section 6. Alimentary canal, vol. 4. Washington: American Physiological Society; 1968. p. 1861–902.Google Scholar
  9. 9.
    Lieberman-Meffert D, Allgower M, Schmid P, Blum AL. Muscular equivalent of the lower esophageal sphincter. Gastroenterology. 1979;76:31–8.Google Scholar
  10. 10.
    Goyal RK, Rattan S. Genesis of basal sphincter pressure: effect of tetrodotoxin on lower esophageal sphincter pressure in opossum in vivo. Gastroenterology. 1976;71:62–77.PubMedGoogle Scholar
  11. 11.
    Holloway RH, Blank EL, Takashashi I, Dodds WJ, Dent J, Sarna SK. Electrical control activity of the lower esophageal sphincter in unanesthetized opossums. Am J Physiol. 1987;252:G511–21.PubMedGoogle Scholar
  12. 12.
    Mittal RK, Rochester DF, McCallum RW. Sphincteric action of the diaphragm during a relaxed lower esophageal sphincter in humans. Am J Physiol. 1989;256:G139–44.PubMedGoogle Scholar
  13. 13.
    Boyle JT, Altschuler SM, Nixon TE, Tuchman DN, Pack AI, Cohen S. Role of the diaphragm in the genesis of lower esophageal sphincter pressure in the cat. Gastroenterology. 1985;88:723–30.PubMedGoogle Scholar
  14. 14.
    Rossiter CD, Norman WP, Jain M, Hornby PJ, Benjamin S, Gillis RA. Control of the lower esophageal sphincter pressure by two sites in the dorsal motor nucleus of the vagus. Am J Physiol. 1990;256:G899–906.Google Scholar
  15. 15.
    Paterson WG, Anderson MA, Anand N. Pharmacological characterization of lower esophageal sphincter relaxation induced by swallowing, vagal efferent nerve stimulation, and esophageal distension. Can J Physiol Pharmacol. 1992;70:1011–5.PubMedCrossRefGoogle Scholar
  16. 16.
    Murray J, Du C, Ledlow A, Bates JN, Conklin JL. Nitric oxide: mediator of nonadrenergic noncholinergic responses of opossum esophageal muscle. Am J Physiol. 1991;261:G401–6.PubMedGoogle Scholar
  17. 17.
    Tøttrup A, Svane D, Forman A. Nitric oxide mediating NANC inhibition in opossum lower esophageal sphincter. Am J Physiol. 1991;260:G385–9.PubMedGoogle Scholar
  18. 18.
    Arndorfer RC, Steff JJ, Dodds WJ, Linehan JH, Hogan WJ. Improved infusion system for intraluminal esophageal manometry. Gastroenterology. 1977;73:23–7.PubMedGoogle Scholar
  19. 19.
    Dodds WJ, Steff JJ, Hogan WJ. Factors determining pressure measurement accuracy by intraluminal esophageal manometry. Gastroenterology. 1976;70:117–20.PubMedGoogle Scholar
  20. 20.
    Marples MJ, Mughal M, Bancewicz J. Can an esophageal pH electrode be accurately positioned without manometry? In: Siewert JR, Holscher AH, editors. Diseases of the esophagus. New York: Springer; 1987. p. 789–91.Google Scholar
  21. 21.
    Murray JA, Clouse RE, Conklin JL. Components of the standard oesophageal manometry. Neurogastroenterol Motil. 2003;15:591–606.PubMedCrossRefGoogle Scholar
  22. 22.
    Blonski W, Hila A, Jain V, Freeman J, Vela M, Castell DO. Impedance manometry with viscous test solution increases detection of esophageal function defects compared to liquid swallows. Scand J Gastroenterol. 2007;42:917–22.PubMedCrossRefGoogle Scholar
  23. 23.
    Basseri B, Pimentel M, Shaye OA, Low K, Soffer EE, Conklin JL. Apple sauce improves detection of esophageal motor dysfunction during high-resolution manometry evaluation of dysphagia. Dig Dis Sci. 2010;56:1723–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Takasaki K, Umeki H, Enatsu K, Tanaka F, Sakihama N, Kumagami H, Takahashi H. Investigation of pharyngeal swallowing function using high-resolution manometry. Laryngoscope. 2008;118:1729–32.PubMedCrossRefGoogle Scholar
  25. 25.
    Fox MR, Bredenoord AJ. Oesophageal high-resolution manometry: moving from research into clinical practice. Gut. 2008;57:405–23.PubMedCrossRefGoogle Scholar
  26. 26.
    Conklin JL, Pimentel M, Soffer EE. A color atlas of high-resolution manometry. New York: Springer Science and Business Media, LLC; 2009.Google Scholar
  27. 27.
    Pandolfino JE, Ghosh SK, Rice J, Clarke JO, Kwiatek MA, Kahrilas PJ. Classifying esophageal motility by pressure topography characteristics: a study of 400 patients and 75 controls. Am J Gastroenterol. 2008;103:27–37.PubMedGoogle Scholar
  28. 28.
    Pandolfino JE, Fox MR, Bredenoord AJ, Kahrilas PJ. High-resolution manometry in clinical practice: utilizing pressure topography to classify oesophageal motility abnormalities. Neurogastroenterol Motil. 2009;21:796–806.PubMedCrossRefGoogle Scholar
  29. 29.
    Mittal RK, Rochester DF, McCallum RW. Effect of the diaphragmatic contraction on lower oesophageal sphincter pressure in man. Gut. 1987;28:1564–15648.PubMedCrossRefGoogle Scholar
  30. 30.
    Mittal RK. The crural diaphragm, an external lower esophageal sphincter: a definitive study. Gastroenterology. 1993;105:1565–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Klein WA, Parkman HP, Dempsey DT, Fisher RS. Sphincterlike thoracoabdominal high pressure zone after esophagogastrectomy. Gastroenterology. 1993;105:1362–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Pandolfino JE, Kim H, Ghosh SK, Clarke JO, Zhang Q, Kahrilas PJ. High-resolution manometry of the OGJ: an analysis of crural diaphragm function in GORD. Am J Gastroenterol. 2007;102:1056–63.PubMedCrossRefGoogle Scholar
  33. 33.
    Dodds WJ, Stewart ET, Hodges D, Zboralske FF. Movement of the feline esophagus associated with respiration and peristalsis. J Clin Invest. 1973;52:1–13.PubMedCrossRefGoogle Scholar
  34. 34.
    Edmundowicz SA, Clouse RE. Shortening of the esophagus in response to swallowing. Am J Physiol. 1991;260:G512–5166.PubMedGoogle Scholar
  35. 35.
    Ghosh SK, Pandolfino JE, Rice J, Clarke JO, Kwiatek M, Kahrilas PJ. Impaired deglutitive OGJ relaxation in clinical esophageal manometry: a quantitative analysis of 400 patients and 75 controls. Am J Physiol. 2007;293:G878–85.CrossRefGoogle Scholar
  36. 36.
    Clouse RE, Staiano A, Alrakawi A, et al. Application of topographical methods to clinical esophageal manometry. Am J Gastroenterol. 2000;95:2720–30.PubMedCrossRefGoogle Scholar
  37. 37.
    Pandolfino JE, Leslie E, Luger D, Mitchell B, Kwiatek MA, Kahrilas PJ. The contractile deceleration point: an important physiologic landmark on oesophageal pressure topography. Neurogastroenterol Motil. 2010;22:395–400.PubMedCrossRefGoogle Scholar
  38. 38.
    Massey BT, Dodds WJ, Hogan WJ, Brasseur JG, Helm JF. Abnormal esophageal motility. An analysis of concurrent radiographic and manometric findings. Gastroenterology. 1991;101:344–54.PubMedGoogle Scholar
  39. 39.
    Kahrilas PJ, Dodds WJ, Hogan WJ. Effect of peristaltic dysfunction on esophageal volume clearance. Gastroenterology. 1988;94:73–80.PubMedGoogle Scholar
  40. 40.
    Bulsiewicz WJ, Kahrilas PJ, Kwiatek MA, Ghosh SK, Meek A, Pandolfino JE. Esophageal pressure topography criteria indicative of incomplete bolus clearance: a study using high-resolution impedance manometry. Am J Gastroenterol. 2011; 104(11):2721–8.CrossRefGoogle Scholar
  41. 41.
    Ghosh SK, Pandolfino JE, Zhang Q, Jarosz A, Shah N, Kahrilas PJ. Quantifying esophageal peristalsis with high-resolution manometry: a study of 75 asymptomatic volunteers. Am J Physiol. 2006;290:G988–97.Google Scholar
  42. 42.
    Pandolfino JE, Kwiatek MA, Nealis T, Bulsiewicz W, Post J, Kahrilas PJ. Achalasia: a new clinically relevant classification by high-resolution manometry. Gastroenterology. 2008;135:1526–33.PubMedCrossRefGoogle Scholar
  43. 43.
    Bredenoord AJ. Fox M. Kahrilas PJ. Pandolfino JE. Schwizer W. Smout AJ. International High Resolution Manometry Working Group. Chicago classification of esophageal motility disorders defined in high-resolution esophageal pressure topography. Neurogastroenterol Motil. 2012;24(Suppl 1):57–65.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Gastroenterology and HepatologyCedars-Sinai Medical CenterLos AngelesUSA

Personalised recommendations