Biomarkers from Molecules to Ecosystems and Biobanks to Genebanks

Chapter

Abstract

The in vitro conservation of economically important tropical crops has made considerable progress, however there is a substantial proportion of tropical diversity that remains difficult to conserve. This chapter considers how molecular technologies including the Barcode of Life initiative and biomarkers may be applied to characterize and enable the conservation of tropical plant species. It explores the use of biomarkers, as biospecimen science research tools to expedite the ex situ conservation of tropical plant diversity and the utility of the Standard Preanalytical Code (SPREC) for the conservation of tropical plant genetic resources.

Keywords

Arena OECD 

Notes

Acknowledgements

The authors gratefully acknowledge Dr Fay Betsou and colleagues in the ISBER Biospecimen Science Working Group.

References

  1. Ahuja I, de Vos RCH, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15:664–674PubMedCrossRefGoogle Scholar
  2. Ayad WG, Hodgkin T, Jaradat A, Rao VR (1997) Molecular genetic techniques for plant genetic resources. Report of an IPGRI workshop, IPGRI, Rome, 9–11 Oct 1995Google Scholar
  3. Balasubramanian R, Müller L, Kugler K, Hackl W, Pleyer L, Dehmer M, Graber A (2010) The impact of storage effects in biobanks on biomarker discovery in systems biology studies. Biomarkers 15:677–683PubMedCrossRefGoogle Scholar
  4. Bank HL, Schmehl MK (1989) Parameters for evaluation of viability assays: accuracy, precision, specificity, sensitivity, and standardization. Cryobiology 26:203–211PubMedCrossRefGoogle Scholar
  5. Benson EE (1999) Plant conservation biotechnology. Taylor and Francis, LondonGoogle Scholar
  6. Benson EE (2004) Cryo-conserving algal and plant diversity: historical perspectives and future challenges. In: Fuller B, Lane N, Benson EE (eds) Life in the frozen state. CRC Press, FloridaGoogle Scholar
  7. Benson EE (2008) Cryopreservation of phytodiversity: a critical appraisal of theory & practice. Crit Rev Plant Sci 27:141–219CrossRefGoogle Scholar
  8. Benson EE, Harding K (2012) Cryopreservation of shoots and meristems: an overview of contemporary methodologies. In: Loyola-Vargas VM, Ocho-Alejo N (eds) Plant cell culture protocols, 3rd edn. Humana Press (in press)Google Scholar
  9. Benson EE, Krishnapillay B, Mansor M (1996) The potential of biotechnology in the in vitro ­conservation of Malaysian forest germplasm: an integrated approach. In: Hussein N, Bacon PS, Choon KK (eds) ODA proceedings of the 3rd conference forestry forest products research, vol I. FRIM Publication, Kuala LumpurGoogle Scholar
  10. Benson EE, Betsou F, Amaral R, Santos LMA, Harding K (2011) Standard preanalytical codes: a new paradigm for environmental biobanking sectors explored in algal culture collections. Biopres Biobank 9:1–12CrossRefGoogle Scholar
  11. Berjak P, Bartels P, Benson EE, Harding K, Mycock D, Pammenter N, Sershen, Wesley-Smith J (2011) Cryo-conservation of South African plant genetic diversity. In Vitro Cell Dev Biol Plant 47:65–81CrossRefGoogle Scholar
  12. Betsou F, Lehmann S, Ashton G, Barnes M, Benson EE, Coppola D, DeSouza Y, Eliason J, Glazer B, Guadagni F, Harding K, Horsfall DJ, Kleeberger C, Nanni U, Prasad A, Shea K, Skubitz A, Somiari S, Gunter E (2010) Standard preanalytical coding for biospecimens: defining the ­sample PREanalytical code. Cancer Epidemiol Biomarkers Prev 19:1004–1011PubMedCrossRefGoogle Scholar
  13. Carpentier SC, Witters E, Laukens K, Van Onckelen H, Swennen R, Panis B (2007) Banana Musa spp. as a model to study the meristem proteome: acclimation to osmotic stress. Proteomics 7:92–105PubMedCrossRefGoogle Scholar
  14. Carpentier SC, Coemans B, Podevin N, Laukens K, Witters E, Matsumura H, Terauchi R, Swennen R, Panis B (2008) Functional genomics in a non-model crop: transcriptomics or proteomics? Physiol Plant 133:117–130PubMedCrossRefGoogle Scholar
  15. CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci USA 106:12794–12797CrossRefGoogle Scholar
  16. Chabot JR, Pedraza JM, Luitel P, Oudenaarden AV (2007) Stochastic gene expression out-of-steady-state in the cyanobacterial circadian clock. Nature 450:1249–1252PubMedCrossRefGoogle Scholar
  17. Coates DJ, Dixon KW (2007) Current perspectives of plant conservation biology. Aust J Bot 55:187–193CrossRefGoogle Scholar
  18. Costa Nunes DA, Benson EE, Oltramari AC, Araujo PS, Moser JR, Viana AM (2003) In vitro conservation of Cedrela fissilis (Meliaceae) a native tree of the Brazilian Atlantic forest. Biodivers Conserv 12:837–848CrossRefGoogle Scholar
  19. Côte FX, Goue O, Domergue R, Panis B, Jenny C (2000) In-field behaviour of banana plants (Musa AA sp.) obtained after regeneration of cryopreserved embryonic cell suspensions. Cryo Lett 21:19–24Google Scholar
  20. Cramer W (2002) Biome models. In: Mooney HA, Canadell JG (eds) The earth system: biological and ecological dimensions of global environmental change, vol 2, Encyclopedia of global environmental change. Wiley, ChichesterGoogle Scholar
  21. de Vicente MC (2004) The evolving role of genebanks in the fast-developing field of molecular genetics. Issues in genetic resources. No. 11, IPGRI, RomeGoogle Scholar
  22. de Vicente MC, Andersson MS (2006) DNA banks-providing novel options for genebanks? Topical reviews in agricultural biodiversity. IPGRI, RomeGoogle Scholar
  23. Diekmann M, Putter CAJ (1996) FAO/IPGRI technical guidelines for the safe movement of germplasm. Musa, vol 15, 2nd edn. IPGRI, RomeGoogle Scholar
  24. Donaldson JS, IUCN/SSC Cycad Specialist Group (2004) Cycads. Status survey and conservation action plan. IUCN, GlandGoogle Scholar
  25. Fang JY, Wetten A, Johnston J (2008) Headspace volatile markers for sensitivity of cocoa (Theobroma cacao L.) somatic embryos to cryopreservation. Plant Cell Rep 27:453–461PubMedCrossRefGoogle Scholar
  26. Garming H, Roux N, Van den Houwe I (2010) The impact of the Musa international transit centre. Review of its services and cost-effectiveness and recommendations for rationalization of its operations. Bioversity International, MontpellierGoogle Scholar
  27. Ghazoul J, Sheil D (2010) Tropical rain forest ecology, diversity, and conservation. Oxford University Press, New YorkGoogle Scholar
  28. Gonzalez MA, Baraloto C, Engel J, Mori SA, Petronelli P, Riera B, Roger A, Thebaud C, Chave J (2009) Identification of Amazonian trees with DNA barcodes. PLoS One 4:e7483. doi:10.1371/journal.pone.0007483PubMedCrossRefGoogle Scholar
  29. Harding K (1996) Approaches to assess the genetic stability of plants recovered from in vitro culture. In: Normah MN, Narimah MK, Clyde MM (eds) Proceedings of the international workshop: in vitro conservation of plant genetic resources. Plant Biotechnology Laboratory, University Kebangsaan Malaysia, Kuala LumpurGoogle Scholar
  30. Harding K (1999) Stability assessments of conserved plant germplasm. In: Benson EE (ed) Plant conservation biotechnology. Taylor and Francis, LondonGoogle Scholar
  31. Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. Cryo Lett 25:3–22Google Scholar
  32. Harding K (2010) Plant and algal cryopreservation: issues in genetic integrity, concepts in ‘cryobionomics’ and current applications in cryobiology. In: Proceedings of the Asia Pacific conference on plant tissues cultures and agrobiotechnology (APaCPa) 2007, Kuala Lumpur. Asia Pac J Mol Biol Biotech 18:151–154Google Scholar
  33. Harding K, Marzalina M, Krishnapillay B, Nashatul ZNA, Normah MN, Benson EE (2000) Molecular stability assessments of trees regenerated from cryopreserved Mahogany seed ­germplasm using non-radioactive techniques to examine chromatin structure and DNA ­methylation status of the ribosomal genes. J Trop Forest Sci 12:149–163Google Scholar
  34. Harding K, Johnston J, Benson EE (2005) Plant and algal cell cryopreservation: issues in genetic integrity, concepts in ‘Cryobionomics’ and current European applications. In: Benett IJ, Bunn E, Clarke H, McComb JA (eds) Contributing to a sustainable future. Proceedings of the Australian branch of the IAPTC & B, Perth, Western Australia, pp 112–119Google Scholar
  35. Harding K, Johnston JW, Benson EE (2009) Exploring the physiological basis of cryopreservation success and failure in clonally propagated in vitro crop plant germplasm. Agr Food Sci 18:3–16CrossRefGoogle Scholar
  36. Higa TC, Paulilo MTS, Benson EE, Pedrotti E, Viana AM (2011) Developing seed cryobanking strategies for Tabebuia heptaphylla (Bignoniaceae) a hardwood tree of the Brazilian South Atlantic forest. Cryo Lett 32:329–338Google Scholar
  37. Holland NT, Smith MT, Eskenazi B, Bastaki M (2003) Biological sample collection and processing for molecular epidemiological studies. Mutat Res 543:217–234PubMedCrossRefGoogle Scholar
  38. Holland NT, Pfleger L, Berger E, Ho A, Bastaki M (2005) Molecular epidemiology biomarkers-sample collection and processing considerations. Toxicol Appl Pharmacol 206:261–268PubMedCrossRefGoogle Scholar
  39. ISBER (2008) Best practices for repositories: collection, storage, retrieval and distribution of biological materials for research. Cell Preserv Technol 6:3–58CrossRefGoogle Scholar
  40. Jackson WP, Kennedy K (2009) The global strategy for plant conservation: a challenge and opportunity for the international community. Trends Plant Sci 14:578–580CrossRefGoogle Scholar
  41. Johnston JW, Harding K, Bremner DH, Souch G, Green J, Lynch PT, Grout B, Benson EE (2005) HPLC analysis of plant DNA methylation: a study of critical methodological factors. Plant Physiol Bioch 43:844–853CrossRefGoogle Scholar
  42. Johnston JW, Harding K, Benson EE (2007) Antioxidant status and genotypic tolerance of Ribes in vitro cultures to cryopreservation. Plant Sci 172:524–534CrossRefGoogle Scholar
  43. Johnston J, Benson EE, Harding K (2009) Cryopreservation of in vitro Ribes shoots induces temporal changes in DNA methylation. Plant Physiol Bioch 47:123–131CrossRefGoogle Scholar
  44. Johnston J, Pimbley I, Harding K, Benson EE (2010) Detection of 8-hydroxy-2′-deoxyguanosine a marker of DNA damage in germplasm and DNA exposed to cryogenic treatments. Cryo Lett 31:1–13Google Scholar
  45. Kaity A, Ashmore SE, Drew RA, Dulloo ME (2008) Assessment of genetic and epigenetic changes following cryopreservation in papaya. Plant Cell Rep 27:1529–1539PubMedCrossRefGoogle Scholar
  46. Kaity A, Ashmore SE, Drew RA (2009) Field performance evaluation and genetic integrity assessment of cryopreserved papaya clones. Plant Cell Rep 28:1421–1430PubMedCrossRefGoogle Scholar
  47. Karp A, Kresovich S, Bhat KV, Ayad WG, Hodgkin T (1997) Molecular tools in plant genetic resources conservation: a guide to the technologies. IPGRI Technical Bulletin, no. 2, IPGRI, RomeGoogle Scholar
  48. Kosakivska IV (2008) Biomarkers of plants with different types of ecological strategies. Gen Appl Plant Physiol 34:113–126Google Scholar
  49. Kramer AT, Havens K (2009) Plant conservation genetics in a changing world. Trends Plant Sci 14:599–607PubMedCrossRefGoogle Scholar
  50. Kranner I, Birtić S, Anderson KM, Pritchard HW (2006) Glutathione half-cell reduction potential: a universal stress marker and modulator of programmed cell death? Free Radical Biol Med 40:2155–2165CrossRefGoogle Scholar
  51. Kugler KG, Hackl WO, Mueller LAJ, Fiegl H, Graber A, Pfeiffer RM (2011) The impact of sample storage time on estimates of association in biomarker discovery studies. J Clin Bioinform 1:1–9CrossRefGoogle Scholar
  52. Laamanen J, Uosukainen M, Häggman H, Nukari A, Rantala S (2008) Cryopreservation of crop species in Europe. In: Proceedings of the CRYOPLANET COST action 871, Agrifood research working papers 153, MTT Agrifood Research, OuluGoogle Scholar
  53. Lakshmanan P, Reed BM, Sarasan V (2011) Special issue on biodiversity. In Vitro Cell Dev Biol Plant 47:1–200Google Scholar
  54. Leifert C, Cassells AC (2001) Microbial hazards in plant tissue and cell cultures. In Vitro Cell Dev Biol Plant 37:133–138CrossRefGoogle Scholar
  55. Lievens B, Grauwet TJMA, Cammue BPA, Thomma BPHJ (2005) Recent developments in ­diagnostics of plant pathogens: a review. Recent Res Dev Micro 9:1–23Google Scholar
  56. Lindenmayer DB, Margules CR, Botkin DB (2000) Indicators of biodiversity for ecologically sustainable forest management. Conserv Biol 14:941–950CrossRefGoogle Scholar
  57. Litz R, Moon P, Benson EE, Stewart J, Chavez VM (2004) A biotechnology strategy for the medium and long-term, conservation of cycads. (New York Botanical Garden). Bot Rev 70:47–53CrossRefGoogle Scholar
  58. Martínez-Montero ME, Ojeda E, Espinosa A (2002) Field performance of sugarcane (Saccharum sp.) plants derived from cryopreserved calluses. Cryo Lett 23:21–26Google Scholar
  59. Miguel C, Marum L (2011) An epigenetic view of plant cells cultured in vitro: somaclonal variation and beyond. J Exp Bot 62:3713–3725. doi: 10.1093/jxb/err155 PubMedCrossRefGoogle Scholar
  60. Mosher RA, Melnyk CW (2010) siRNAs and DNA methylation: seedy epigenetics. Trends Plant Sci 15:204–210PubMedCrossRefGoogle Scholar
  61. Msogoya TJ, Grout BW, Maerere AP (2011) Performance of micropropagation-induced off-type of East African highland banana (Musa AAA—East Africa). J Animal Plant Sci 10:1334–1338Google Scholar
  62. Nadarajan J, Staines HJ, Benson EE, Marzalina M, Krishnapillay B, Harding K (2006) Optimization of cryopreservation protocol for Sterculia cordata zygotic embryos using Taguchi experiments. J Trop Forest Sci 18:222–230Google Scholar
  63. Nadarajan J, Staines HJ, Benson EE, Marzalina M, Krishnapillay B, Harding K (2007) Optimization of cryopreservation for Sterculia cordata zygotic embryos using vitrification techniques. J Trop Forest Sci 19:79–85Google Scholar
  64. Nadarajan J, Mansor M, Krishnapillay B, Staines HJ, Benson EE, Harding K (2008) Applications of differential scanning calorimetry developing cryopreservation strategies for Parkia speciosa a tropical tree producing recalcitrant seeds. Cryo Lett 29:95–110Google Scholar
  65. Naidoo C, Benson EE, Berjak P, Goveia M, Pammenter NW (2011) Exploring the use of DMSO and ascorbic acid to promote shoot development by excised embryonic axes of recalcitrant seeds. Cryo Lett 32:166–174Google Scholar
  66. Nashatul Zaimah NA, Benson EE, Marzalina M (2007) Viability of Elateriospermum Tapos (Perah) embryos after storage. J Trop Forest Sci 19:1–5Google Scholar
  67. Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M (2010) Plant phenotypic plasticity in a changing climate. Trends Plant Sci 15:684–692PubMedCrossRefGoogle Scholar
  68. Noor NM, Kean CW, Vun YL, Zeti AMH (2011) In vitro conservation of Malaysian biodiversity—achievements, challenges and future directions. In Vitro Cell Dev Biol Plant 47:26–36Google Scholar
  69. OECD (2007) OECD best practice guidelines for biological resource centres. OECD, ParisGoogle Scholar
  70. Okere AU, Adegeye A (2011) In vitro propagation of an endangered medicinal timber species Khaya grandifoliola C. Dc. Afr J Biotechnol 10:3335–3339Google Scholar
  71. Palmirotta R, Ludovici G, De Marchis ML, Savonarola A, Leone B, Spila A, De Angelis F, Morte DD, Ferroni P, Guadagni F (2011) Preanalytical procedures for DNA studies: the experience of the interinstitutional multidisciplinary biobank (BioBIM). Biopres Biobank 9:35–45CrossRefGoogle Scholar
  72. Pilatti FK, Aguiar T, Simões T, Benson EE, Viana AM (2011) In vitro and cryogenic preservation of plant biodiversity in Brazil. In Vitro Cell Dev Biol Plant 47:82–98CrossRefGoogle Scholar
  73. Rao NK (2004) Plant genetic resources: advancing conservation and use through biotechnology. Afr J Biotechnol 3:136–145Google Scholar
  74. Ratnasingham S, Hebert PDN (2007) BOLD: The barcode of life data system. Mol Ecol Notes 7:355–364 (www.barcodinglife.org)PubMedCrossRefGoogle Scholar
  75. Reed BM (2008) Plant cryopreservation: a practical guide. Springer, New YorkCrossRefGoogle Scholar
  76. Riegman PHJ, Morente MM, Betsou F, de Blasio P, Geary P (2008) Biobanking for better healthcare. Mol Oncol 2:213–222PubMedCrossRefGoogle Scholar
  77. Rodriguez-Enriquez J, Dickinson HG, Grant-Downton RT (2011) MicroRNA misregulation: an overlooked factor generating somaclonal variation? Trends Plant Sci 16:242–248PubMedCrossRefGoogle Scholar
  78. Rubio-Somoza I, Weigel D (2011) MicroRNA networks and developmental plasticity in plants. Trends Plant Sci 16:258–264PubMedCrossRefGoogle Scholar
  79. Sahijram L, Soneji JR, Bollamma KT (2003) Invited review: analyzing somaclonal variation in micropropagated bananas (Musa spp.). In Vitro Cell Dev Biol Plant 39:551–556CrossRefGoogle Scholar
  80. Sass C, Little DP, Stevenson DW, Specht CD (2007) DNA barcoding in the cycadales: testing the potential of proposed barcoding markers for species identification of cycads. PLoS One 2(11):e1154. doi: 10.1371/journal.pone.0001154 PubMedCrossRefGoogle Scholar
  81. Scocchi A, Faloci M, Medina R, Olmos S, Mrogincki L (2004) Plant recovery of cryopreserved apical meristem-tips of Melia azedarach L. using encapsulation/dehydration and assessment of their genetic stability. Euphytica 135:29–38CrossRefGoogle Scholar
  82. Scowcroft WR (1984) Genetic variability in tissue culture: impact on germplasm conservation and utilisation, Report (AGPG: IBPGR/84/152), IBPGR, RomeGoogle Scholar
  83. Sershen, Berjak P, Pammenter NW (2010) Effects of cryopreservation of recalcitrant Amaryllis belladonna zygotic embryos on vigor of recovered seedlings: a case of stress ‘hangover’? Physiol Plant 139:205–219CrossRefGoogle Scholar
  84. Sharrock S, Hird A, Kramer A, Oldfield S (2010) Saving plants, saving the planet: botanic gardens and the implementation of GSPC target 8. Botanic gardens conservation international, RichmondGoogle Scholar
  85. Shulaev V, Oliver DJ (2006) Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research. Plant Physiol 141:367–372PubMedCrossRefGoogle Scholar
  86. Spooner D, van Treuren R, de Vicente MC (2005) Molecular markers for genebank management. IPGRI technical bulletin, no. 10, IPGRI, RomeGoogle Scholar
  87. Staines HH, Marzalina M, Krishnapillay B et al (1999) Using Taguchi experimental design for developing cryopreservation strategies for recalcitrant seeds. In: Marzalina M, Khoo KC, Jayanthi N et al (eds) Proceedings of the IUFRO seed symposium 1998—recalcitrant seeds. FRIM Publication, Kuala LumpurGoogle Scholar
  88. Sugii NC (2011) The establishment of axenic seed and embryo cultures of endangered Hawaiian plant species: special review of disinfestation protocols. In Vitro Cell Dev Biol Plant 47: 157–169Google Scholar
  89. Tausz M, Sircelj H, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress-response concept valid? J Exper Bot 55:1955–1962CrossRefGoogle Scholar
  90. Van den Houwe I, Swennen R (2000) Characterization and control of bacterial contaminants in in vitro cultivars of banana (Musa spp.). Acta Hortic 530:69–79Google Scholar
  91. Verleysen H, Samyn G, Van Bockstaele E, Debergh P (2004) Evaluation of analytical techniques to predict viability after cryopreservation. Plant Cell Tiss Org Cult 77:11–21CrossRefGoogle Scholar
  92. Volk GM (2010) Application of functional genomics and proteomics to plant cryopreservation. Curr Genomics 11:24–29PubMedCrossRefGoogle Scholar
  93. Yin LL, Poobathy R, James J, Julkifle AL, Subramaniam S (2011) Preliminary investigation of cryopreservation by encapsulation-dehydration technique on Brassidium Shooting Star orchid hybrid. Afr J Biotech 10:4665–4672Google Scholar
  94. Zhu G-Y, Geuns JMC, Dussert S, Swennen R, Panis B (2006) Change in sugar, sterol and fatty acid composition in banana meristems caused by sucrose-induced acclimation and its effects on cryopreservation. Physiol Plant 128:80–94CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.DamarFifeUK

Personalised recommendations