Skip to main content

Case Studies in Electrolyte and Acid–Base Disorders

  • Chapter
  • First Online:
Core Concepts in the Disorders of Fluid, Electrolytes and Acid-Base Balance
  • 3654 Accesses

Abstract

Acid–base and electrolyte cases can be intimidating, for both medical trainees and experienced clinicians. The underlying physiological principles can be difficult to grasp, diagnostic workup elusive, and management options obscure. This chapter includes ten real-life clinical vignettes that provide a step-by-step analysis of the pathophysiology, differential diagnosis, and management of selected clinical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berl T. Treating hyponatremia: damned if we do and damned if we don’t. Kidney Int. 1990;37:1006–18.

    PubMed  CAS  Google Scholar 

  2. Bagley SC, Yaeger D. Hyponatremia associated with bupropion, a case verified by rechallenge. J Clin Psychopharmacol. 2005;25:98–9.

    PubMed  Google Scholar 

  3. Mewasingh L, Aylett S, Kirkham F, Stanhope R. Hyponatraemia associated with lamotrigine in cranial diabetes insipidus. Lancet. 2000;356:656.

    PubMed  CAS  Google Scholar 

  4. Hill AR, Uribarri J, Mann J, Berl T. Altered water metabolism in tuberculosis: role of vasopressin. Am J Med. 1990;88:357–64.

    PubMed  CAS  Google Scholar 

  5. Smith J, Godwin-Austen R. Hypersecretion of anti-diuretic hormone due to tuberculous meningitis. Postgrad Med J. 1980;56:41–4.

    PubMed  CAS  Google Scholar 

  6. Verbalis JG, Berl T. Disorders of water balance. In: Brenner BM, editor. The kidney. 8th ed. Philadelphia: Saunders; 2008. p. 459–546.

    Google Scholar 

  7. Chung HM, Kluge R, Schrier RW, Anderson RJ. Clinical assessment of extracellular fluid volume in hyponatremia. Am J Med. 1987;83:905–8.

    PubMed  CAS  Google Scholar 

  8. Milionis HJ, Liamis GL, Elisaf MS. The hyponatremic patient: a systematic approach to laboratory diagnosis. CMAJ. 2002;166:1056–62.

    PubMed  Google Scholar 

  9. Berl T. Impact of solute intake on urine flow and water excretion. J Am Soc Nephrol. 2008;19:1076–8.

    PubMed  CAS  Google Scholar 

  10. Liamis GL, Milionis HJ, Rizos EC, Siamopoulos KC, Elisaf MS. Mechanisms of hyponatraemia in alcohol patients. Alcohol Alcohol. 2000;35:612–6.

    PubMed  CAS  Google Scholar 

  11. Sanghvi SR, Kellerman PS, Nanovic L. Beer potomania: an unusual cause of hyponatremia at high risk of complications from rapid correction. Am J Kidney Dis. 2007;50:673–80.

    PubMed  Google Scholar 

  12. Musch W, Xhaet O, Decaux G. Solute loss plays a major role in polydipsia-related hyponatraemia of both water drinkers and beer drinkers. QJM. 2003;96:421–6.

    PubMed  CAS  Google Scholar 

  13. Thaler SM, Teitelbaum I, Berl T. “Beer potomania” in non-beer drinkers: effect of low dietary solute intake. Am J Kidney Dis. 1998;31:1028–31.

    PubMed  CAS  Google Scholar 

  14. Rosenbaum JD, Nelson 3rd WP, Strauss MB, Davis RK, Rossmeisl EC. Variation in the diurectic response to ingested water related to the renal excretion of solutes. J Clin Invest. 1953;32:394–404.

    PubMed  CAS  Google Scholar 

  15. Rose BD. New approach to disturbances in the plasma sodium concentration. Am J Med. 1986;81:1033–40.

    PubMed  CAS  Google Scholar 

  16. Hilden T, Svendsen TL. Electrolyte disturbances in beer drinkers. A specific “hypo-osmolality syndrome”. Lancet. 1975;2:245–6.

    PubMed  CAS  Google Scholar 

  17. Sterns RH, Nigwekar SU, Hix JK. The treatment of hyponatremia. Semin Nephrol. 2009;29:282–99.

    PubMed  CAS  Google Scholar 

  18. Perianayagam A, Sterns RH, Silver SM, et al. DDAVP is effective in preventing and reversing inadvertent overcorrection of hyponatremia. Clin J Am Soc Nephrol. 2008;3:331–6.

    PubMed  CAS  Google Scholar 

  19. Sterns RH, Hix JK, Silver S. Treating profound hyponatremia: a strategy for controlled correction. Am J Kidney Dis. 2010;56:774–9.

    PubMed  CAS  Google Scholar 

  20. Mount DB. The brain in hyponatremia: both culprit and victim. Semin Nephrol. 2009;29:196–215.

    PubMed  CAS  Google Scholar 

  21. Davison JM, Shiells EA, Philips PR, Lindheimer MD. Serial evaluation of vasopressin release and thirst in human pregnancy. Role of human chorionic gonadotrophin in the osmoregulatory changes of gestation. J Clin Invest. 1988;81:798–806.

    PubMed  CAS  Google Scholar 

  22. Hayslett JP, Katz DL, Knudson JM. Dilutional hyponatremia in pre-eclampsia. Am J Obstet Gynecol. 1998;179:1312–6.

    PubMed  CAS  Google Scholar 

  23. Dokmetas HS, Kilicli F, Korkmaz S, Yonem O. Characteristic features of 20 patients with Sheehan’s syndrome. Gynecol Endocrinol. 2006;22:279–83.

    PubMed  Google Scholar 

  24. Fichman MP, Vorherr H, Kleeman CR, Telfer N. Diuretic-induced hyponatremia. Ann Intern Med. 1971;75:853–63.

    PubMed  CAS  Google Scholar 

  25. Sharabi Y, Illan R, Kamari Y, et al. Diuretic induced hyponatraemia in elderly hypertensive women. J Hum Hypertens. 2002;16:631–5.

    PubMed  CAS  Google Scholar 

  26. Friedman E, Shadel M, Halkin H, Farfel Z. Thiazide-induced hyponatremia. Reproducibility by single dose rechallenge and an analysis of pathogenesis. Ann Intern Med. 1989;110:24–30.

    PubMed  CAS  Google Scholar 

  27. Berl T, Linas SL, Aisenbrey GA, Anderson RJ. On the mechanism of polyuria in potassium depletion. The role of polydipsia. J Clin Invest. 1977;60:620–5.

    PubMed  CAS  Google Scholar 

  28. Morris RG, Hoorn EJ, Knepper MA. Hypokalemia in a mouse model of Gitelman’s syndrome. Am J Physiol Renal Physiol. 2006;290:F1416–20.

    PubMed  CAS  Google Scholar 

  29. Cesar KR, Magaldi AJ. Thiazide induces water absorption in the inner medullary collecting duct of normal and brattleboro rats. Am J Physiol. 1999;277:F756–60.

    PubMed  CAS  Google Scholar 

  30. Kim GH, Lee JW, Oh YK, et al. Antidiuretic effect of hydrochlorothiazide in lithium-induced nephrogenic diabetes insipidus is associated with upregulation of aquaporin-2, Na-Cl co-transporter, and epithelial sodium channel. J Am Soc Nephrol. 2004;15:2836–43.

    PubMed  CAS  Google Scholar 

  31. Clark BA, Shannon RP, Rosa RM, Epstein FH. Increased susceptibility to thiazide-induced hyponatremia in the elderly. J Am Soc Nephrol. 1994;5:1106–11.

    PubMed  CAS  Google Scholar 

  32. Rao R, Zhang MZ, Zhao M, et al. Lithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria. Am J Physiol Renal Physiol. 2005;288:F642–9.

    PubMed  CAS  Google Scholar 

  33. Norregaard R, Jensen BL, Li C, et al. COX-2 inhibition prevents downregulation of key renal water and sodium transport proteins in response to bilateral ureteral obstruction. Am J Physiol Renal Physiol. 2005;289:F322–33.

    PubMed  CAS  Google Scholar 

  34. Plasencia YL, Cortes MB, Arencibia DM, et al. Esthesioneuroblastoma recurrence presenting as a syndrome of inappropriate antidiuretic hormone secretion. Head Neck. 2006;28:1142–6.

    PubMed  Google Scholar 

  35. Osterman J, Calhoun A, Dunham M, et al. Chronic syndrome of inappropriate antidiuretic hormone secretion and hypertension in a patient with olfactory neuroblastoma. Evidence of ectopic production of arginine vasopressin by the tumor. Arch Intern Med. 1986;146:1731–5.

    PubMed  CAS  Google Scholar 

  36. Cullen MJ, Cusack DA, O’Briain DS, Devlin JB, Kehely A, Lyons TA. Neurosecretion of arginine vasopressin by an olfactory neuroblastoma causing reversible syndrome of antidiuresis. Am J Med. 1986;81:911–6.

    PubMed  CAS  Google Scholar 

  37. Renneboog B, Decaux G. Idiopathic hyponatremia in a young patient: look at the sinus. Am J Med. 2008;121:e5–6.

    PubMed  Google Scholar 

  38. Ma AT, Lei KI. Small cell neuroendocrine carcinoma of the ethmoid sinuses presenting with generalized seizure and syndrome of inappropriate antidiuretic hormone secretion: a case report and review of literature. Am J Otolaryngol. 2009;30:54–7.

    PubMed  CAS  Google Scholar 

  39. Vasan NR, Medina JE, Canfield VA, Gillies EM. Sinonasal neuroendocrine carcinoma in association with SIADH. Head Neck. 2004;26:89–93.

    PubMed  Google Scholar 

  40. List AF, Hainsworth JD, Davis BW, Hande KR, Greco FA, Johnson DH. The syndrome of inappropriate secretion of antidiuretic hormone (SIADH) in small-cell lung cancer. J Clin Oncol. 1986;4:1191–8.

    PubMed  CAS  Google Scholar 

  41. Ellison DH, Berl T. Clinical practice. The syndrome of inappropriate antidiuresis. N Engl J Med. 2007;356:2064–72.

    PubMed  CAS  Google Scholar 

  42. Ferlito A, Rinaldo A, Devaney KO. Syndrome of inappropriate antidiuretic hormone secretion associated with head neck cancers: review of the literature. Ann Otol Rhinol Laryngol. 1997;106:878–83.

    PubMed  CAS  Google Scholar 

  43. Anpalahan M. Chronic idiopathic hyponatremia in older people due to syndrome of inappropriate antidiuretic hormone secretion (SIADH) possibly related to aging. J Am Geriatr Soc. 2001;49:788–92.

    PubMed  CAS  Google Scholar 

  44. Decaux G, Vandergheynst F, Bouko Y, Parma J, Vassart G, Vilain C. Nephrogenic syndrome of inappropriate antidiuresis in adults: high phenotypic variability in men and women from a large pedigree. J Am Soc Nephrol. 2007;18:606–12.

    PubMed  CAS  Google Scholar 

  45. Rosner MH. Exercise-associated hyponatremia. Semin Nephrol. 2009;29(3):271–81.

    PubMed  CAS  Google Scholar 

  46. Hew-Butler T, Jordaan E, Stuempfle KJ, et al. Osmotic and nonosmotic regulation of arginine vasopressin during prolonged endurance exercise. J Clin Endocrinol Metab. 2008;93:2072–8.

    PubMed  CAS  Google Scholar 

  47. Hew-Butler T. Arginine vasopressin, fluid balance and exercise: is exercise-associated hyponatraemia a disorder of arginine vasopressin secretion? Sports Med. 2010;40:459–79.

    PubMed  Google Scholar 

  48. Grantham JJ, Orloff J. Effect of prostaglandin E1 on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3′,5′-monophosphate, and theophylline. J Clin Invest. 1968;47:1154–61.

    PubMed  CAS  Google Scholar 

  49. Fernandez-Llama P, Ecelbarger CA, Ware JA, et al. Cyclooxygenase inhibitors increase Na-K-2Cl cotransporter abundance in thick ascending limb of Henle’s loop. Am J Physiol. 1999;277:F219–26.

    PubMed  CAS  Google Scholar 

  50. Sun R, Carlson NG, Hemmert AC, Kishore BK. P2Y2 receptor-mediated release of prostaglandin E2 by IMCD is altered in hydrated and dehydrated rats: relevance to AVP-independent regulation of IMCD function. Am J Physiol Renal Physiol. 2005;289:F585–92.

    PubMed  CAS  Google Scholar 

  51. Wharam PC, Speedy DB, Noakes TD, Thompson JM, Reid SA, Holtzhausen LM. NSAID use increases the risk of developing hyponatremia during an ironman triathlon. Med Sci Sports Exerc. 2006;38:618–22.

    PubMed  CAS  Google Scholar 

  52. Fraser CL, Arieff AI. Epidemiology, pathophysiology, and management of hyponatremic encephalopathy. Am J Med. 1997;102:67–77.

    PubMed  CAS  Google Scholar 

  53. Ayus JC, Arieff AI. Pulmonary complications of hyponatremic encephalopathy. Noncardiogenic pulmonary edema and hypercapnic respiratory failure. Chest. 1995;107:517–21.

    PubMed  CAS  Google Scholar 

  54. Kalantar-Zadeh K, Nguyen MK, Chang R, Kurtz I. Fatal hyponatremia in a young woman after ecstasy ingestion. Nat Clin Pract Nephrol. 2006;2:283–8. quiz 9.

    PubMed  Google Scholar 

  55. Siegel AJ, Verbalis JG, Clement S, et al. Hyponatremia in marathon runners due to inappropriate arginine vasopressin secretion. Am J Med. 2007;120:461. e11–7.

    PubMed  Google Scholar 

  56. Janicic N, Verbalis JG. Evaluation and management of hypo-osmolality in hospitalized patients. Endocrinol Metab Clin North Am. 2003;32:459–81. vii.

    PubMed  CAS  Google Scholar 

  57. Nguyen MK. Quantitative approaches to the analysis and treatment of the dysnatremias. Semin Nephrol. 2009;29:216–26.

    PubMed  CAS  Google Scholar 

  58. Mohmand HK, Issa D, Ahmad Z, Cappuccio JD, Kouides RW, Sterns RH. Hypertonic saline for hyponatremia: risk of inadvertent overcorrection. Clin J Am Soc Nephrol. 2007;2:1110–7.

    PubMed  Google Scholar 

  59. Lauriat SM, Berl T. The hyponatremic patient: practical focus on therapy. J Am Soc Nephrol. 1997;8:1599–607.

    PubMed  CAS  Google Scholar 

  60. Sterns RH, Hix JK. Overcorrection of hyponatremia is a medical emergency. Kidney Int. 2009;76:587–9.

    PubMed  Google Scholar 

  61. Soupart A, Penninckx R, Stenuit A, Perier O, Decaux G. Reinduction of hyponatremia improves survival in rats with myelinolysis-related neurologic symptoms. J Neuropathol Exp Neurol. 1996;55:594–601.

    PubMed  CAS  Google Scholar 

  62. Soupart A, Penninckx R, Crenier L, Stenuit A, Perier O, Decaux G. Prevention of brain demyelination in rats after excessive correction of chronic hyponatremia by serum sodium lowering. Kidney Int. 1994;45:193–200.

    PubMed  CAS  Google Scholar 

  63. Soupart A, Ngassa M, Decaux G. Therapeutic relowering of the serum sodium in a patient after excessive correction of hyponatremia. Clin Nephrol. 1999;51:383–6.

    PubMed  CAS  Google Scholar 

  64. Oya S, Tsutsumi K, Ueki K, Kirino T. Reinduction of hyponatremia to treat central pontine myelinolysis. Neurology. 2001;57:1931–2.

    PubMed  CAS  Google Scholar 

  65. Goldszmidt MA, Iliescu EA. DDAVP to prevent rapid correction in hyponatremia. Clin Nephrol. 2000;53:226–9.

    PubMed  CAS  Google Scholar 

  66. Smith TJ, Gill JC, Ambruso DR, Hathaway WE. Hyponatremia and seizures in young children given DDAVP. Am J Hematol. 1989;31:199–202.

    PubMed  CAS  Google Scholar 

  67. Odeh M, Oliven A. Coma and seizures due to severe hyponatremia and water intoxication in an adult with intranasal desmopressin therapy for nocturnal enuresis. J Clin Pharmacol. 2001;41:582–4.

    PubMed  CAS  Google Scholar 

  68. Pruthi RS, Kang J, Vick R. Desmopressin induced hyponatremia and seizures after laparoscopic radical nephrectomy. J Urol. 2002;168:187.

    PubMed  Google Scholar 

  69. Dehoorne JL, Raes AM, van Laecke E, Hoebeke P, Vande Walle JG. Desmopressin toxicity due to prolonged half-life in 18 patients with nocturnal enuresis. J Urol. 2006;176:754–7. discussion 7–8.

    PubMed  CAS  Google Scholar 

  70. Rembratt A, Graugaard-Jensen C, Senderovitz T, Norgaard JP, Djurhuus JC. Pharmacokinetics and pharmacodynamics of desmopressin administered orally versus intravenously at daytime versus night-time in healthy men aged 55–70 years. Eur J Clin Pharmacol. 2004;60:397–402.

    PubMed  CAS  Google Scholar 

  71. Fjellestad-Paulsen A, Hoglund P, Lundin S, Paulsen O. Pharmacokinetics of 1-deamino-8-D-arginine vasopressin after various routes of administration in healthy volunteers. Clin Endocrinol (Oxf). 1993;38:177–82.

    CAS  Google Scholar 

  72. Diederich S, Franzen NF, Bahr V, Oelkers W. Severe hyponatremia due to hypopituitarism with adrenal insufficiency: report on 28 cases. Eur J Endocrinol. 2003;148:609–17.

    PubMed  CAS  Google Scholar 

  73. Raff H. Glucocorticoid inhibition of neurohypophysial vasopressin secretion. Am J Physiol. 1987;252:R635–44.

    PubMed  CAS  Google Scholar 

  74. Erkut ZA, Pool C, Swaab DF. Glucocorticoids suppress corticotropin-releasing hormone and vasopressin expression in human hypothalamic neurons. J Clin Endocrinol Metab. 1998;83:2066–73.

    PubMed  CAS  Google Scholar 

  75. Saito T, Ishikawa SE, Ando F, Higashiyama M, Nagasaka S, Sasaki S. Vasopressin-dependent upregulation of aquaporin-2 gene expression in glucocorticoid-deficient rats. Am J Physiol Renal Physiol. 2000;279:F502–8.

    PubMed  CAS  Google Scholar 

  76. Wang W, Li C, Summer SN, et al. Molecular analysis of impaired urinary diluting capacity in glucocorticoid deficiency. Am J Physiol Renal Physiol. 2006;290:F1135–42.

    PubMed  CAS  Google Scholar 

  77. Kamoi K, Tamura T, Tanaka K, Ishibashi M, Yamaji T. Hyponatremia and osmoregulation of thirst and vasopressin secretion in patients with adrenal insufficiency. J Clin Endocrinol Metab. 1993;77:1584–8.

    PubMed  CAS  Google Scholar 

  78. Agus ZS, Goldberg M. Role of antidiuretic hormone in the abnormal water diuresis of anterior hypopituitarism in man. J Clin Invest. 1971;50:1478–89.

    PubMed  CAS  Google Scholar 

  79. Shoji M, Kimura T, Ota K, et al. Cortical laminar necrosis and central pontine myelinolysis in a patient with Sheehan syndrome and severe hyponatremia. Intern Med. 1996;35:427–31.

    PubMed  CAS  Google Scholar 

  80. Lasheen I, Doi SA, Al-Shoumer KA. Glucocorticoid replacement in panhypopituitarism complicated by myelinolysis. Med Princ Pract. 2005;14:115–7.

    PubMed  Google Scholar 

  81. Schrier RW, Gross P, Gheorghiade M, et al. Tolvaptan, a selective oral vasopressin V2-receptor antagonist, for hyponatremia. N Engl J Med. 2006;355:2099–112.

    PubMed  CAS  Google Scholar 

  82. Zeltser D, Rosansky S, van Rensburg H, Verbalis JG, Smith N. Assessment of the efficacy and safety of intravenous conivaptan in euvolemic and hypervolemic hyponatremia. Am J Nephrol. 2007;27:447–57.

    PubMed  CAS  Google Scholar 

  83. Sands JM, Bichet DG. Nephrogenic diabetes insipidus. Ann Intern Med. 2006;144:186–94.

    PubMed  CAS  Google Scholar 

  84. Rao R, Patel S, Hao C, Woodgett J, Harris R. GSK3beta mediates renal response to vasopressin by modulating adenylate cyclase activity. J Am Soc Nephrol. 2010;21:428–37.

    PubMed  CAS  Google Scholar 

  85. Goldberg H, Clayman P, Skorecki K. Mechanism of Li inhibition of vasopressin-sensitive adenylate cyclase in cultured renal epithelial cells. Am J Physiol. 1988;255:F995–1002.

    PubMed  CAS  Google Scholar 

  86. Takaichi K, Kurokawa K. Inhibitory guanosine triphosphate-binding protein-mediated regulation of vasopressin action in isolated single medullary tubules of mouse kidney. J Clin Invest. 1988;82:1437–44.

    PubMed  CAS  Google Scholar 

  87. Christensen BM, Zuber AM, Loffing J, et al. alphaENaC-mediated lithium absorption promotes nephrogenic diabetes insipidus. J Am Soc Nephrol. 2011;22:253–61.

    PubMed  CAS  Google Scholar 

  88. Batlle DC, von Riotte AB, Gaviria M, Grupp M. Amelioration of polyuria by amiloride in patients receiving long-term lithium therapy. N Engl J Med. 1985;312:408–14.

    PubMed  CAS  Google Scholar 

  89. Bedford JJ, Weggery S, Ellis G, et al. Lithium-induced nephrogenic diabetes insipidus: renal effects of amiloride. Clin J Am Soc Nephrol. 2008;3:1324–31.

    PubMed  CAS  Google Scholar 

  90. Boton R, Gaviria M, Batlle DC. Prevalence, pathogenesis, and treatment of renal dysfunction associated with chronic lithium therapy. Am J Kidney Dis. 1987;10:329–45.

    PubMed  CAS  Google Scholar 

  91. Allen HM, Jackson RL, Winchester MD, Deck LV, Allon M. Indomethacin in the treatment of lithium-induced nephrogenic diabetes insipidus. Arch Intern Med. 1989;149:1123–6.

    PubMed  CAS  Google Scholar 

  92. Lam SS, Kjellstrand C. Emergency treatment of lithium-induced diabetes insipidus with nonsteroidal anti-inflammatory drugs. Ren Fail. 1997;19:183–8.

    PubMed  CAS  Google Scholar 

  93. Mount DB, Zandi-Nejad K. Disorders of potassium balance. In: Brenner BM, editor. Brenner and Rector’s the kidney. 8th ed. Philadelphia: W.B. Saunders Co.; 2008. p. 547–87.

    Google Scholar 

  94. Choi MJ, Ziyadeh FN. The utility of the transtubular potassium gradient in the evaluation of hyperkalemia. J Am Soc Nephrol. 2008;19:424–6.

    PubMed  CAS  Google Scholar 

  95. Ryan DP, da Silva MR, Soong TW, et al. Mutations in potassium channel Kir2.6 cause susceptibility to thyrotoxic hypokalemic periodic paralysis. Cell. 2010;140:88–98.

    PubMed  CAS  Google Scholar 

  96. Chan A, Shinde R, Chow CC, Cockram CS, Swaminathan R. In vivo and in vitro sodium pump activity in subjects with thyrotoxic periodic paralysis. BMJ. 1991;303:1096–9.

    PubMed  CAS  Google Scholar 

  97. Azuma KK, Hensley CB, Tang MJ, McDonough AA. Thyroid hormone specifically regulates skeletal muscle Na(+)-K(+)-ATPase alpha 2- and beta 2-isoforms. Am J Physiol. 1993;265:C680–7.

    PubMed  CAS  Google Scholar 

  98. Ginsberg AM, Clutter WE, Shah SD, Cryer PE. Triiodothyronine-induced thyrotoxicosis increases mononuclear leukocyte beta-adrenergic receptor density in man. J Clin Invest. 1981;67:1785–91.

    PubMed  CAS  Google Scholar 

  99. Soonthornpun S, Setasuban W, Thamprasit A. Insulin resistance in subjects with a history of thyrotoxic periodic paralysis (TPP). Clin Endocrinol (Oxf). 2009;70:794–7.

    CAS  Google Scholar 

  100. Chan A, Shinde R, Chow CC, Cockram CS, Swaminathan R. Hyperinsulinaemia and Na+, K(+)-ATPase activity in thyrotoxic periodic paralysis. Clin Endocrinol (Oxf). 1994;41:213–6.

    CAS  Google Scholar 

  101. Lin SH, Chu P, Cheng CJ, Chu SJ, Hung YJ, Lin YF. Early diagnosis of thyrotoxic periodic paralysis: spot urine calcium to phosphate ratio. Crit Care Med. 2006;34:2984–9.

    PubMed  CAS  Google Scholar 

  102. Lin SH, Lin YF, Chen DT, Chu P, Hsu CW, Halperin ML. Laboratory tests to determine the cause of hypokalemia and paralysis. Arch Intern Med. 2004;164:1561–6.

    PubMed  Google Scholar 

  103. Lu KC, Hsu YJ, Chiu JS, Hsu YD, Lin SH. Effects of potassium supplementation on the recovery of thyrotoxic periodic paralysis. Am J Emerg Med. 2004;22:544–7.

    PubMed  Google Scholar 

  104. Shiang JC, Cheng CJ, Tsai MK, et al. Therapeutic analysis in Chinese patients with thyrotoxic periodic paralysis over 6 years. Eur J Endocrinol. 2009;161:911–6.

    PubMed  CAS  Google Scholar 

  105. Ahmed I, Chilimuri SS. Fatal dysrhythmia following potassium replacement for hypokalemic periodic paralysis. West J Emerg Med. 2010;11:57–9.

    PubMed  Google Scholar 

  106. Sigue G, Gamble L, Pelitere M, et al. From profound hypokalemia to life-threatening hyperkalemia: a case of barium sulfide poisoning. Arch Intern Med. 2000;160:548–51.

    PubMed  CAS  Google Scholar 

  107. Zydlewski AW, Hasbargen JA. Hypothermia-induced hypokalemia. Mil Med. 1998;163:719–21.

    PubMed  CAS  Google Scholar 

  108. Schaefer M, Link J, Hannemann L, Rudolph KH. Excessive hypokalemia and hyperkalemia following head injury. Intensive Care Med. 1995;21:235–7.

    PubMed  CAS  Google Scholar 

  109. Ethier JH, Kamel KS, Magner PO, Lemann Jr J, Halperin ML. The transtubular potassium concentration in patients with hypokalemia and hyperkalemia. Am J Kidney Dis. 1990;15:309–15.

    PubMed  CAS  Google Scholar 

  110. Panichpisal K, Angulo-Pernett F, Selhi S, Nugent KM. Gitelman-like syndrome after cisplatin therapy: a case report and literature review. BMC Nephrol. 2006;7:10.

    PubMed  Google Scholar 

  111. Dorup I, Clausen T. Correlation between magnesium and potassium contents in muscle: role of Na(+)-K+ pump. Am J Physiol. 1993;264:C457–63.

    PubMed  CAS  Google Scholar 

  112. Huang CL, Kuo E. Mechanism of hypokalemia in magnesium deficiency. J Am Soc Nephrol. 2007;18:2649–52.

    PubMed  Google Scholar 

  113. Yang L, Frindt G, Palmer LG. Magnesium modulates ROMK channel-mediated potassium secretion. J Am Soc Nephrol. 2010;21:2109–16.

    PubMed  CAS  Google Scholar 

  114. Rodriguez M, Solanki DL, Whang R. Refractory potassium repletion due to cisplatin-induced magnesium depletion. Arch Intern Med. 1989;149:2592–4.

    PubMed  CAS  Google Scholar 

  115. Whang R, Flink EB, Dyckner T, Wester PO, Aikawa JK, Ryan MP. Magnesium depletion as a cause of refractory potassium repletion. Arch Intern Med. 1985;145:1686–9.

    PubMed  CAS  Google Scholar 

  116. Isidori AM, Kaltsas GA, Pozza C, et al. The ectopic adrenocorticotropin syndrome: clinical features, diagnosis, management, and long-term follow-up. J Clin Endocrinol Metab. 2006;91:371–7.

    PubMed  CAS  Google Scholar 

  117. Funder JW, Pearce PT, Smith R, Smith AI. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science. 1988;242:583–5.

    PubMed  CAS  Google Scholar 

  118. Kim GH, Masilamani S, Turner R, Mitchell C, Wade JB, Knepper MA. The thiazide-sensitive Na-Cl cotransporter is an aldosterone-induced protein. Proc Natl Acad Sci U S A. 1998;95:14552–7.

    PubMed  CAS  Google Scholar 

  119. Soundararajan R, Melters D, Shih IC, Wang J, Pearce D. Epithelial sodium channel regulated by differential composition of a signaling complex. Proc Natl Acad Sci U S A. 2009;106:7804–9.

    PubMed  CAS  Google Scholar 

  120. Zhang W, Xia X, Reisenauer MR, et al. Aldosterone-induced Sgk1 relieves Dot1a-Af9-mediated transcriptional repression of epithelial Na+ channel alpha. J Clin Invest. 2007;117:773–83.

    PubMed  CAS  Google Scholar 

  121. White PC, Mune T, Agarwal AK. 11 beta-Hydroxysteroid dehydrogenase and the syndrome of apparent mineralocorticoid excess. Endocr Rev. 1997;18:135–56.

    PubMed  CAS  Google Scholar 

  122. Howlett TA, Drury PL, Perry L, Doniach I, Rees LH, Besser GM. Diagnosis and management of ACTH-dependent Cushing’s syndrome: comparison of the features in ectopic and pituitary ACTH production. Clin Endocrinol (Oxf). 1986;24:699–713.

    CAS  Google Scholar 

  123. Torpy DJ, Mullen N, Ilias I, Nieman LK. Association of hypertension and hypokalemia with Cushing’s syndrome caused by ectopic ACTH secretion: a series of 58 cases. Ann N Y Acad Sci. 2002;970:134–44.

    PubMed  CAS  Google Scholar 

  124. Stewart PM, Walker BR, Holder G, O’Halloran D, Shackleton CH. 11 beta-Hydroxysteroid dehydrogenase activity in Cushing’s syndrome: explaining the mineralocorticoid excess state of the ectopic adrenocorticotropin syndrome. J Clin Endocrinol Metab. 1995;80:3617–20.

    PubMed  CAS  Google Scholar 

  125. Tang NL, Hui J, To KF, Ng HK, Hjelm NM, Fok TF. Severe hypokalemic myopathy in Gitelman’s syndrome. Muscle Nerve. 1999;22:545–7.

    PubMed  CAS  Google Scholar 

  126. Wong KM, Chak WL, Cheung CY, et al. Hypokalemic metabolic acidosis attributed to cough mixture abuse. Am J Kidney Dis. 2001;38:390–4.

    PubMed  CAS  Google Scholar 

  127. Treger R, Pirouz S, Kamangar N, Corry D. Agreement between central venous and arterial blood gas measurements in the intensive care unit. Clin J Am Soc Nephrol. 2010;5:390–4.

    PubMed  CAS  Google Scholar 

  128. Kraut JA, Madias NE. Serum anion gap: its uses and limitations in clinical medicine. Clin J Am Soc Nephrol. 2007;2:162–74.

    PubMed  CAS  Google Scholar 

  129. Korosi A, Kahn T, Kalb T, Uribarri J. Marked hyperlactatemia associated with severe alkalemia in a patient with thrombotic thrombocytopenic purpura. Am J Kidney Dis. 2000;36:E6.

    PubMed  CAS  Google Scholar 

  130. Hood VL, Tannen RL. Protection of acid-base balance by pH regulation of acid production. N Engl J Med. 1998;339:819–26.

    PubMed  CAS  Google Scholar 

  131. Kraut JA, Kurtz I. Toxic alcohol ingestions: clinical features, diagnosis, and management. Clin J Am Soc Nephrol. 2008;3:208–25.

    PubMed  CAS  Google Scholar 

  132. Smith SW, Manini AF, Szekely T, Hoffman RS. Bedside detection of urine beta-hydroxybutyrate in diagnosing metabolic acidosis. Acad Emerg Med. 2008;15:751–6.

    PubMed  Google Scholar 

  133. Balasubramanyam A, Nalini R, Hampe CS, Maldonado M. Syndromes of ketosis-prone diabetes mellitus. Endocr Rev. 2008;29:292–302.

    PubMed  CAS  Google Scholar 

  134. Umpierrez GE, DiGirolamo M, Tuvlin JA, Isaacs SD, Bhoola SM, Kokko JP. Differences in metabolic and hormonal milieu in diabetic- and alcohol-induced ketoacidosis. J Crit Care. 2000;15:52–9.

    PubMed  CAS  Google Scholar 

  135. Wrenn KD, Slovis CM, Minion GE, Rutkowski R. The syndrome of alcoholic ketoacidosis. Am J Med. 1991;91:119–28.

    PubMed  CAS  Google Scholar 

  136. McGuire LC, Cruickshank AM, Munro PT. Alcoholic ketoacidosis. Emerg Med J. 2006;23:417–20.

    PubMed  CAS  Google Scholar 

  137. Graham GG, Punt J, Arora M, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50:81–98.

    PubMed  CAS  Google Scholar 

  138. Prikis M, Mesler EL, Hood VL, Weise WJ. When a friend can become an enemy! Recognition and management of metformin-associated lactic acidosis. Kidney Int. 2007;72:1157–60.

    PubMed  CAS  Google Scholar 

  139. van Berlo-van de Laar IR, Vermeij CG, Doorenbos CJ. Metformin associated lactic acidosis: incidence and clinical correlation with metformin serum concentration measurements. J Clin Pharm Ther. 2011;36:376–82.

    PubMed  CAS  Google Scholar 

  140. Vasisht KP, Chen SC, Peng Y, Bakris GL. Limitations of metformin use in patients with kidney disease: are they warranted? Diabetes Obes Metab. 2011;12:1079–83.

    Google Scholar 

  141. He L, Sabet A, Djedjos S, et al. Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell. 2009;137:635–46.

    PubMed  CAS  Google Scholar 

  142. Shaw RJ, Lamia KA, Vasquez D, et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science. 2005;310:1642–6.

    PubMed  CAS  Google Scholar 

  143. Foretz M, Hebrard S, Leclerc J, et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J Clin Invest. 2011;120:2355–69.

    Google Scholar 

  144. El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem. 2000;275:223–8.

    PubMed  CAS  Google Scholar 

  145. Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348(Pt 3):607–14.

    PubMed  CAS  Google Scholar 

  146. Protti A, Russo R, Tagliabue P, et al. Oxygen consumption is depressed in patients with lactic acidosis due to biguanide intoxication. Crit Care. 2010;14:R22.

    PubMed  Google Scholar 

  147. Friesecke S, Abel P, Roser M, Felix SB, Runge S. Outcome of severe lactic acidosis associated with metformin accumulation. Crit Care. 2010;14:R226.

    PubMed  Google Scholar 

  148. Peters N, Jay N, Barraud D, et al. Metformin-associated lactic acidosis in an intensive care unit. Crit Care. 2008;12:R149.

    PubMed  Google Scholar 

  149. Seidowsky A, Nseir S, Houdret N, Fourrier F. Metformin-associated lactic acidosis: a prognostic and therapeutic study. Crit Care Med. 2009;37:2191–6.

    PubMed  CAS  Google Scholar 

  150. Finkle SN. Should dialysis be offered in all cases of metformin-associated lactic acidosis? Crit Care. 2009;13:110.

    PubMed  Google Scholar 

  151. Guo PY, Storsley LJ, Finkle SN. Severe lactic acidosis treated with prolonged hemodialysis: recovery after massive overdoses of metformin. Semin Dial. 2006;19:80–3.

    PubMed  Google Scholar 

  152. Renom G, Maisonneuve N, Kim I, Dehon B, Azar R. Major ketogenesis and the absence of an osmolar gap in an atypical case of alcoholic ketoacidosis. Ann Clin Biochem. 2003;40:424–6.

    PubMed  CAS  Google Scholar 

  153. Forni LG, McKinnon W, Lord GA, Treacher DF, Peron JM, Hilton PJ. Circulating anions usually associated with the Krebs cycle in patients with metabolic acidosis. Crit Care. 2005;9:R591–5.

    PubMed  Google Scholar 

  154. Forni LG, McKinnon W, Hilton PJ. Unmeasured anions in metabolic acidosis: unravelling the mystery. Crit Care. 2006;10:220.

    PubMed  Google Scholar 

  155. Lins LE. Reversible renal failure caused by hypercalcemia. A retrospective study. Acta Med Scand. 1978;203:309–14.

    PubMed  CAS  Google Scholar 

  156. Hebert SC. Calcium and salinity sensing by the thick ascending limb: a journey from mammals to fish and back again. Kidney Int Suppl. 2004;91:S28–33.

    PubMed  CAS  Google Scholar 

  157. Procino G, Carmosino M, Tamma G, et al. Extracellular calcium antagonizes forskolin-induced aquaporin 2 trafficking in collecting duct cells. Kidney Int. 2004;66:2245–55.

    PubMed  CAS  Google Scholar 

  158. Wang W, Li C, Kwon TH, Knepper MA, Frokiaer J, Nielsen S. AQP3, p-AQP2, and AQP2 expression is reduced in polyuric rats with hypercalcemia: prevention by cAMP-PDE inhibitors. Am J Physiol Renal Physiol. 2002;283:F1313–25.

    PubMed  CAS  Google Scholar 

  159. Mangat H, Peterson LN, Burns KD. Hypercalcemia stimulates expression of intrarenal phospholipase A2 and prostaglandin H synthase-2 in rats. Role of angiotensin II AT1 receptors. J Clin Invest. 1997;100:1941–50.

    PubMed  CAS  Google Scholar 

  160. Levi M, Ellis MA, Berl T. Control of renal hemodynamics and glomerular filtration rate in chronic hypercalcemia. Role of prostaglandins, renin-angiotensin system, and calcium. J Clin Invest. 1983;71:1624–32.

    PubMed  CAS  Google Scholar 

  161. Perazella MA, Markowitz GS. Bisphosphonate nephrotoxicity. Kidney Int. 2008;74:1385–93.

    PubMed  CAS  Google Scholar 

  162. Bland R, Walker EA, Hughes SV, Stewart PM, Hewison M. Constitutive expression of 25-hydroxyvitamin D3–1alpha-hydroxylase in a transformed human proximal tubule cell line: evidence for direct regulation of vitamin D metabolism by calcium. Endocrinology. 1999;140:2027–34.

    PubMed  CAS  Google Scholar 

  163. Pepper K, Jaowattana U, Starsiak MD, et al. Renal cell carcinoma presenting with paraneoplastic hypercalcemic coma: a case report and review of the literature. J Gen Intern Med. 2007;22:1042–6.

    PubMed  Google Scholar 

  164. Burtis WJ, Brady TG, Orloff JJ, et al. Immunochemical characterization of circulating parathyroid hormone-related protein in patients with humoral hypercalcemia of cancer. N Engl J Med. 1990;322:1106–12.

    PubMed  CAS  Google Scholar 

  165. Brereton HD, Halushka PV, Alexander RW, Mason DM, Keiser HR, DeVita Jr VT. Indomethacin-responsive hypercalcemia in a patient with renal-cell adenocarcinoma. N Engl J Med. 1974;291:83–5.

    PubMed  CAS  Google Scholar 

  166. Seyberth HW, Raisz LG, Oates JA. Prostaglandins and hypercalcemic states. Annu Rev Med. 1978;29:23–9.

    PubMed  CAS  Google Scholar 

  167. Okada Y, Lorenzo JA, Freeman AM, et al. Prostaglandin G/H synthase-2 is required for maximal formation of osteoclast-like cells in culture. J Clin Invest. 2000;105:823–32.

    PubMed  CAS  Google Scholar 

  168. Li X, Tomita M, Pilbeam CC, Breyer RM, Raisz LG. Prostaglandin receptor EP2 mediates PGE2 stimulated hypercalcemia in mice in vivo. Prostaglandins Other Lipid Mediat. 2002;67:173–80.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Cases 1–5 are reproduced from Mount DB, Krahn TA. Hyponatremia: case vignettes. Semin Nephrol 2009;29:300–17, with permission of the publisher.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Mount M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mount, D.B. (2013). Case Studies in Electrolyte and Acid–Base Disorders. In: Mount, D., Sayegh, M., Singh, A. (eds) Core Concepts in the Disorders of Fluid, Electrolytes and Acid-Base Balance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-3770-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3770-3_12

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-3769-7

  • Online ISBN: 978-1-4614-3770-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics